Exercícios de Amostragem

Desvio Padrão X Erro → Diferenças.

$$\frac{S_{x}^{-}}{X} = \frac{s}{\sqrt{n}}$$

$$\overline{X} \pm t_{\alpha(2),v} s_{x}^{-}$$

$$\overline{X} \pm t_{\alpha(2),v} s_{\overline{x}}$$

Confiabilidade das estimativas? O que é e como medir? Acurácia + Precisão?

Comparação entre métodos

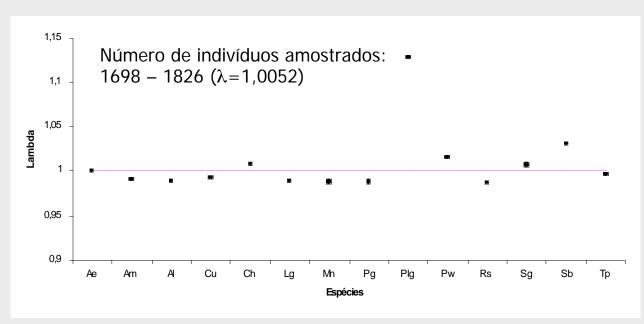
Exercícios de Amostragem

Precisão ou Acurácia?

Média Desvio Erro IC	Azul 320 270 85,4 193,1	Vermelho 30 48,3 15,3 34,6	Preto 90 119,7 37,9 85,6	Verde 60 107,5 34,0 76,9	Total 500 316,2 100,0 226,2
	.,,,	5.,,5	22,0		,_
Grupo	Azul	Vermelho	Preto	Verde	Total
1	280	40	120	0	440
2	280	10	70	40	400
3	320	30	90	60	500
4	190	20	180	100	490
5	310	60	90	10	470
Média	276	32	110	42	460
Desvio	51,3	19,2	43,0	40,2	40,6
Erro	22,9	8,6	19,2	18,0	18,2
IC	63,7	23,9	53,4	50,0	50,4
	Azul 303	Vermelho 36	Preto 110	Verde 44	Total 493

Variações entre espécies

Paula, A. 1999. Alterações florísticas e fitossociológicas ocorridas em 14 anos na vegetação arbórea de um estande florestal na Universidade Federal de Viçosa, Viçosa, MG. Tese de Mestrado, UFV, Viçosa.


Vegetação: Floresta estacional semidecidual montana.

Tamanho da área: 75 ha

Amostra: 1 ha (100 parcelas 10 X 10 m)

Tamanho mínimo: CAP ≥ 15 cm

Intervalo de tempo: 14 anos (1984 - 1998)

Ae: Allophylus edulis

Am: Anadenanthera macrocarpa

Al: *Apuleia leiocarpa* Cu: *Casearia ulmifolia*

Ch: Coutarea hexandra

Lg: Luehea grandiflora

Mn: Machaerium nyctitans

Pg: Piptadenia gonoacantha

Plg: Plinia glomerata

Pw: Protium warmingianum

Rs: Rollinia silvatica

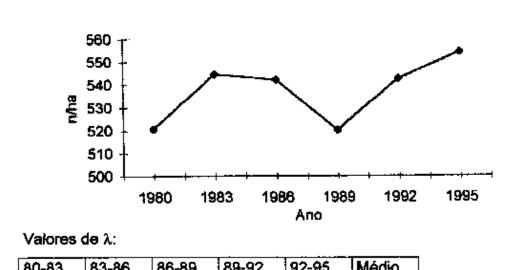
Sg: Siparuna guianense

Sb: Sorocea bonplandii

Tp: Trichilia pallida

Variações entre anos

Rolim, S.G. 1997. Dinâmica da floresta Atlântica em Linhares (ES) (1980-1995). Tese de Mestrado, ESALQ, Piracicaba.


Vegetação: Floresta ombrófila densa.

Tamanho da área: 22000 ha

Amostra: 2,5 ha (5 parcelas 50 X 100 m)

Tamanho mínimo: DAP ≥ 10 cm

Intervalo de tempo: 15 anos (1980 – 1983 – 1986 – 1989 – 1992 – 1995)

80-83	83-86	86-89	89-92	92-95	Médio
1,0151	0,9983	0,9865	1,0142	1,0071	1,0042

Variações entre anos e no espaço

Pimenta, J.A. 1998. Estudo populacional de *Campomanesia xanthocarpa* O. Berg (Myrtaceae) no Parque Estadual Mata dos Godoy, Londrina, PR. Tese de Doutorado, UNICAMP, Campinas.

Bianchini, E. 1998. Ecologia de população de *Chrysophyllum gonocarpum* (Mart. & Eichler) Engl. no Parque Estadual Mata dos Godoy, Londrina, PR. Tese de Doutorado, UNICAMP, Campinas.

Vegetação: Floresta estacional semidecidual.

Tamanho da área: 680 ha

Amostra: 1,5 ha (150 parcelas 10 X 10 m)

Tamanho mínimo: todos os indivíduos

Intervalo de tempo: 2 anos (1995 – 1997)

Campomanesia xanthocarpa

	λ							
Área	1995	-1996	1996-	1997				
AA	0,9862	1,0000	1,0006	1,0023				
ANA1	0,9518	0,9999	1,2585	1,0429				
ANA2	0,9804	0,9999	1,0041	1,0000				

Chrysophyllum gonocarpum

	2	l
Área	1995-1996	1996-1997
AA	1,0251	0,9999
ANA1	0,9996	0,9990
ANA2	0,9992	0,9984

Variações entre anos e entre espécies

Santos, F.A.M., Martins, F.R. & Tamashiro, J.Y. dados não publicados. Itirapina, SP.

Vegetação: Cerrado. Tamanho da área: ?

Amostra: 0,16 ha (64 parcelas 5 X 5 m) Tamanho mínimo: todos os indivíduos

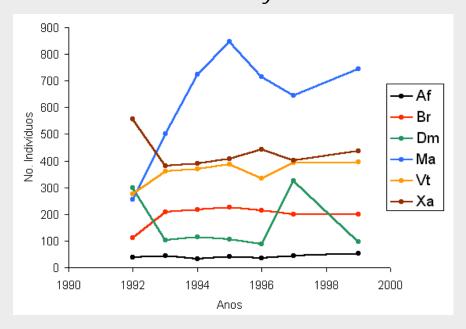
	1992	1993	1994	1995	1996	1997	1999	2001	2002	2003	2004
Anadenanthera falcata	38	44	32	40	34	43	52	28	33	30	24
Bauhinia rufa	110	208	216	225	213	199	200	155	154	158	134
Dalbergia miscolobium	300	104	113	107	89	326	96	80	296	198	136
Miconia albicans	512	501	725	848	715	644	744	493	536	294	330
Vochysia tucanorum	276	361	369	386	333	394	395	284	240	218	213
Xylopia aromatica	556	381	390	407	443	402	438	379	398	344	383
Roupala montana	Χ	Х	Χ	Х	1897	1985	2322	1639	1873	1705	1969

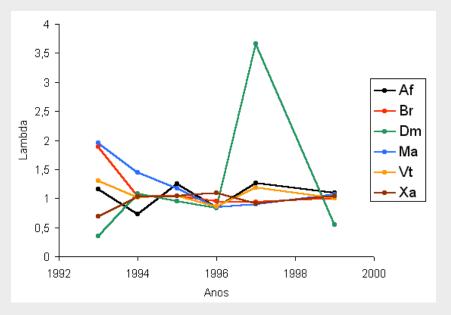
Exercício:

Utilize os modelos apresentados até o momento para descrever o crescimento populacional das 7 espécies de cerrado constantes na tabela acima.

O que está acontecendo com cada uma das espécies?

Santos, F.A.M., Martins, F.R. & Tamashiro, J.Y. dados não publicados. Itirapina, SP.


Vegetação: Cerrado. Tamanho da área: ?


Amostra: 0,16 ha (64 parcelas 5 X 5 m) Tamanho mínimo: todos os indivíduos

Intervalo de tempo: 7 anos (1992 – 1993 – 1994 – 1995 – 1996 – 1997 – 1999)

Af: Anadenanthera falcata Dm: Dalbergia miscolobium Vt: Vochysia tucanorum Br: *Bauhinia rufa*Ma: *Miconia albicans*

Xa: Xylopia aromatica

Mortalidade

Swaine & Lieberman (1987):

Modelo logarítmico: $m = 100 (log_e n_0 - log_e n_1)/t$

 n_0 = número inicial de árvores

n₁ = número de árvores sobreviventes após um intervalo de tempo

t = intervalo de tempo (em anos)

Modelo aritmético: $m = 100 (n_0 - n_1)/(t.n_0)$

Implica em que a proporção de mortos não é constante a cada intervalo de tempo

Meia-vida $(t_{0.5})$ = número de anos para a população inicial reduzir pela metade

Tempo para dobrar de tamanho (t_2) = número de anos para que a população dobre o tamanho inicial

$$t_{0.5} = (\log_e 0.5)/d$$
 $(t_2) = (\log_e 2)/r$

Taxa de "turnover" = b/d

Sheil et al. (1995):

$$N_1 = N_0(1-m)^t,$$

$$m=1-(N_{1}/N_{0})^{1/t},$$

$$m = 1 - [1 - (N_0 - N_1)/N_0]^{1/t}$$



Fig. 1 The exponential mortality coefficient, λ , against true annual mortality, m (solid line). The 1:1 relationship is given for comparison (dashed line).

		•	χ ² (1)			χ ² ₍₁₎ (m ≠			χ ² ₍₁₎ (i ≠		
species	suc	λ	(^{λ ≠ 1})	р	m	0.0379)	р	i	0.0266)	р	
Acacia											
polyphylla	Р	0.9657	2.580	0.108	0.1247	12.300	< 0.001	0.0898	9.059	0.003	
Actinostemon											
communis	Ε	1.0000	0.002	0.960	0.0369	0.001	0.972	0.0369	2.264	0.132	
Esenbeckia											
febrifuga	Ε	0.9785	1.080	0.299	0.0840	4.918	0.027	0.0623	4.211	0.040	
Galipea											Espécies:
multiflora	Ε	1.0229	2.009	0.156	0.0303	0.131	0.718	0.0529	4.289	0.038	
Piptadenia											> 20 m
gonoacantha	Ε	1.0047	0.061	0.805	0.0251	0.812	0.367	0.0298	0.027	0.870	10 – 20 m
Syagrus											
romanzoffiana	Ε	0.9801	0.417	0.519	0.0201	0.531	0.466	0.0000	2.153	0.142	< 10 m
Syphoneugenia											
densiflora	Ε	0.9951	0.013	0.909	0.0100	2.486	0.115	0.0051	2.095	0.148	
Trichilia											
catigua	Ε	1.0081	0.195	0.659	0.0153	2.747	0.097	0.0233	0.023	0.878	
Trichilia											
clausenii	Ε	0.9850	6.024	0.014	0.0353	0.277	0.634	0.0201	2.475	0.116	т
Trichilia											Taxas:
pallida	Ε	1.0173	0.645	0.422	0.0275	0.162	0.687	0.0446	1.160	0.281	p < 0.05
Zanthoxylum											1 1
minutiflorum	Ε	1.0055	0.016	0.901	0.0120	1.635	0.201	0.0175	0.166	0.683	P < 0,10
Aspidosperma											P > 0,10
polyneuron	L	0.9754	12.586	< 0.001	0.0288	2.892	0.089	0.0039	28.809	< 0.001	1 > 0,10
Astronium											
graveolens	L	0.9913	0.465	0.495	0.0201	3.495	0.062	0.0114	3.825	0.050	
Holocalyx											
balansae	L	1.0165	0.225	0.635	0.0000	2.509	0.113	0.0164	0.106	0.744	
Ixora											
gardneriana	L	0.9695	1.760	0.185	0.0423	0.008	0.930	0.0113	0.787	0.375	
Pachystroma											
longifolium	L	1.0371	3.018	0.082	0.0000	3.863	0.049	0.0365	0.236	0.627	
Psychotria											
vauthieri	L	0.9544	34.801	<0.001	0.0547	7.553	0.006	0.0081	13.797	< 0.001	

EFEITO DE DENSIDADE

Os modelos de competição são derivados da equação logística.

$$\frac{dN}{dt} = rN \frac{(K - N - \alpha N)}{K}$$
 Onde α é o coeficiente de competição.

Considerando competição intraespecífica, o modelo assume que o efeito de um indivíduo sobre os demais é igual ao efeito recíproco. Daí, o termo ser omitido da fórmula. A competição aqui é considerada simétrica.

Plantas podem responder à competição por redução numérica (aumento de mortalidade e/ou redução de fecundidade) ou por redução de tamanho (plasticidade de crescimento).

Plantas podem atingir K seja por número ou por biomassa.

Lei dos 3/2 (Auto-debaste ou "self-thinning")

Yoda et al. (1963)

Peso de uma dada planta (w) \propto Volume da Planta = Cubo de uma dimensão linear (I^3) Área média ocupada por uma planta (S) \propto Quadrado de uma medida linear (I^2)

Se:
$$\mathbf{w} \propto \mathbf{I}^3 \in \mathbf{S} \propto \mathbf{I}^2$$

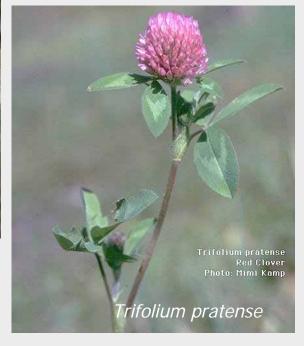
Então:
$$\sqrt{s} \propto l \propto \sqrt[3]{w} : w \propto S^{3/2}$$

A área média ocupada por uma planta (s) é inversamente proporcional à densidade ρ

s
$$\propto$$
 1/ $\rho \Rightarrow$ w \propto (1/ ρ)^{3/2} \Rightarrow w $\propto \rho$ ^{-3/2}

Então:
$$w = c. \rho^{-3/2}$$

Lei dos 3/2 (Auto-debaste ou "self-thinning")


Yoda et al. (1963)

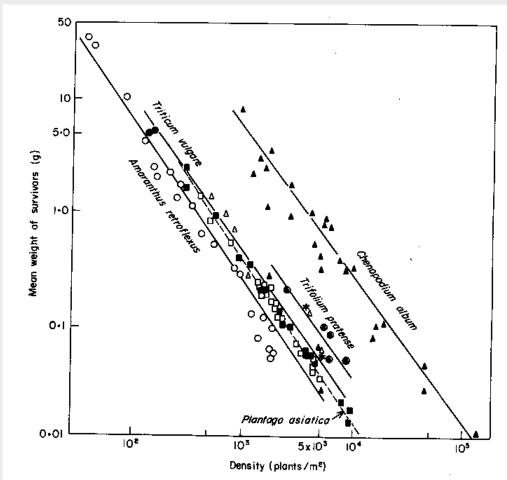


Fig. 6/22a. Changes in plant density and in mean plant weight with the passage of time. Data for Chenopodium, Amaranthus, and Plantago from Yoda et al., (1963); data for Trifolium and Triticum from Harper and White (1970) after data of Black and of Puckeridge.

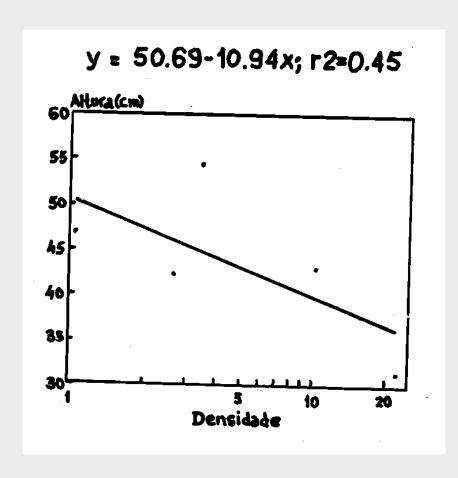
Importância na agricultura:

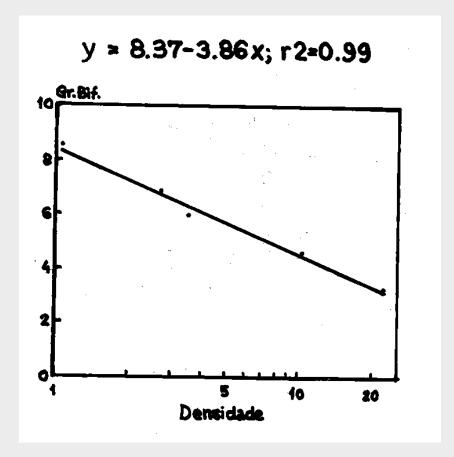
y = Produtividade

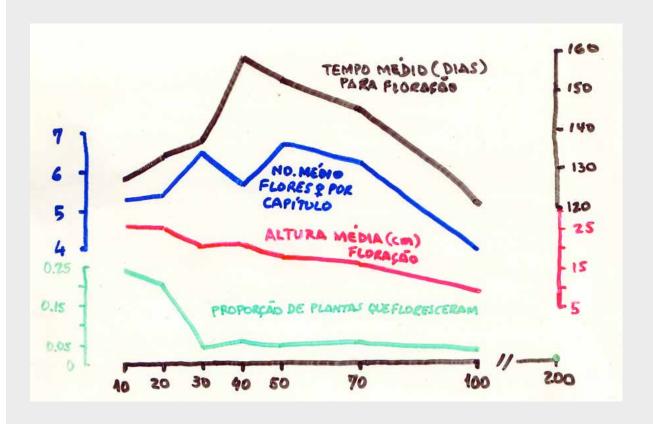
$$y = w. \rho : w = y/\rho$$

$$\therefore$$
 y/ ρ = c. ρ ^{-3/2}

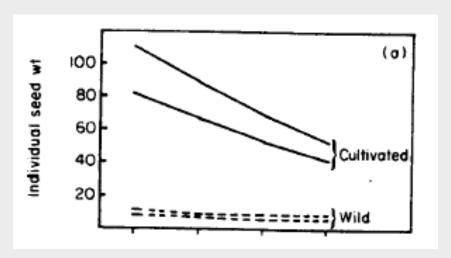
$$\therefore y = c. \rho^{-1/2}$$

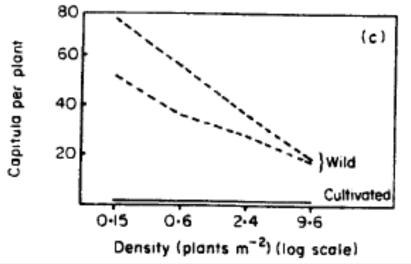

Efeito de densidade

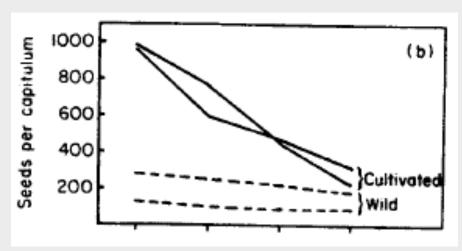

Acanthospermum hispidum (Compositae) Santos (1983)

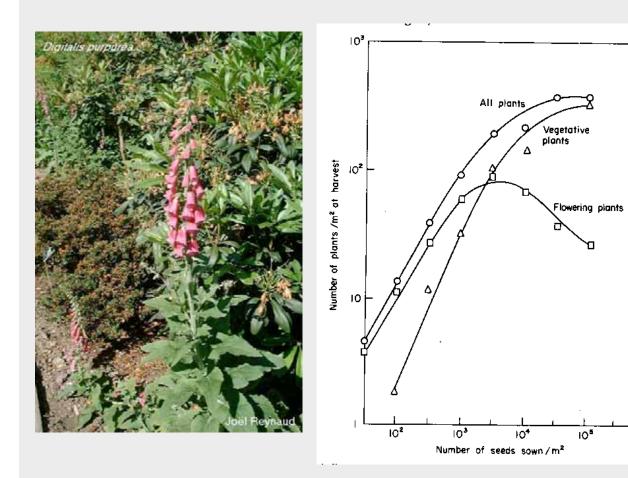


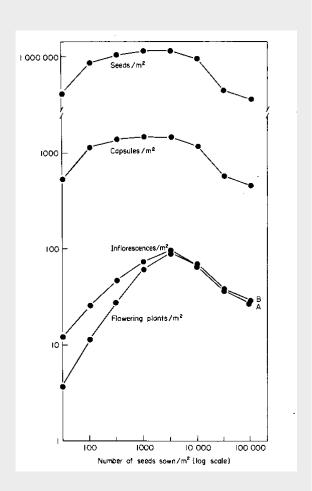
Acanthospermum hispidum (Compositae) Santos (1983)




Acanthospermum hispidum (Compositae) (Santos 1983)


Densidades	indivíduos/m²	sementes/m²
Abril/1988	3,5	1356
Maio/1988	2,7	1789
Junho/1988	1,1	813
Dezembro/1988	21,8	1807
Janeiro/1989	10,2	1723




Bradshaw (1974) Helianthus annus

Digitalis purpurea (Schrophulariaceae) – Planta Bienal Oxley (1977)