Matriz de Lefkovitch (1965) Baseada em estádios: morfológicos (descontínuos) ou tamanhos (contínuo)

Modelo geral:

$$\begin{vmatrix} n_{1} \\ n_{2} \\ n_{3} \\ \vdots \\ n_{s} \end{vmatrix} (t+1) = \begin{vmatrix} a_{11} & a_{21} & a_{31} & \cdots & a_{s1} \\ a_{12} & a_{22} & a_{32} & \cdots & a_{s2} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{s3} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ a_{1s} & a_{2s} & a_{3s} & \cdots & a_{ss} \end{vmatrix} \begin{vmatrix} n_{1} \\ n_{2} \\ n_{2} \\ n_{3} \end{vmatrix} (t)$$

Onde $a_{ii} =$

se i<j: probabilidade de um indivíduo na classe i passar à classe j, após um intervalo de tempo se i=j: probabilidade de um indivíduo na classe i permanecer na mesma classe após um intervalo de tempo

se i>j: número médio de indivíduos da classe j, produzidos por indivíduo da classe i, após um intervalo de tempo

Exemplo: Dipsacus sylvestris (Dipsacaceae) (Werner & Caswell 1977)

Exemplos de tabelas de vida esquemáticas:

Euterpe edulis – Floresta Paludícola – Mata de Santa Genebra, SP – 250 ha - 1991-1993

Matos, D.M.S., Freckleton, R.P. & Watkinson, A.R. 1999. The role of density dependence in the population dynamics of a tropical palm. Ecology 80: 2635-2650.

Syagrus romanzoffiana – Floresta Paludícola – Mata de Santa Genebra, SP – 250 ha - 1993-1994

Bernacci, L.C. 2001. Aspectos da demografia da palmeira nativa *Syagrus romanzoffiana* (Cham.) Glassman, jerivá, como subsídio ao seu manejo. Tese de Doutorado. UNICAMP.

Attalea humilis – Floresta Ombrófila Densa – Poço das Antas, RJ

FRAGMENT III FRAGMENT I 0.6 0.9 0.000.3 0.10.20.0 0.0 0.1 0.1 0.0 0.2 0.00. 0.5 0.8 0.0 0.1R 0.64.00.8 $\lambda = 1,066 \pm 0,007$ $\lambda = 1,229 \pm 0,011$

Souza, A.F. 2000. Aspectos da dinâmica de populações da palmeira *Attalea humilis* Mart. ex. Spreng. em fragmentos de floresta Atlântica sujeitos ao fogo. Tese de Mestrado. UNICAMP.

Matrizes Aspidosperma polyneuron – Floresta Estacional Semidecidual – Mata de Santa Genebra, SP

Sensibilidade: mede a importância de uma pequena mudança em um dado elemento da matriz sobre o auto valor dominante (λ)

Elasticidade: mede a contribuição proporcional de cada elemento da matriz para o autovalor dominante (λ)

Fonseca, M.G. 2001. Aspectos demográficos de *Aspidosperma polyneuron* Muell. Arg. (Apocynaceae) em dois fragmentos de floresta semidecídua no município de Campinas, SP. Tese de Mestrado. UNICAMP.

FIG. 1. An example of a population with a monocarpic life history, classified by age and size. Each **B** represents an age and size class (i, j) within which individuals could be found. Each arrow represents a possible transition from one census to the next. Transitions involving survival (continuous lines) are made up of two components: the probability of surviving from age *i* and size *j* (p_{ij}), and the probability of being in size class *k* at age *i* + 1 if an individual survives q_{ijk} . Transitions involving reproduction (b_{ij}) are shown as discontinuous lines. For clarity, only nonzero values of b_{ij} , p_{ij} , and q_{ijk} are shown.

Modelos considerando idades e estádios (Law 1983)

Size at	Size at age i						
age $i + 1$	0	1	2	3			
-	Survival probability						
0 1 2 3	0.03 0.05 0.02 0	0 0 0 0	0 0 0 0		$= P_{0}$		
0 1 2 3	0.009 0.001 0 0	0 0.18 0.12 0	0 0 0.25 0.25	$\begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$	= P,		
0 1 2 3	0.009 0.001 0 0	0 0.2 0.3 0	0 0 0.21 0.49		$= P_2$		
0 1 2 3	0.009 0.001 0 0	0 0.2 0.2 0	0 0 0.24 0.36	$\begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$	= P ₃		

Matriz de Projeção Populacional – Tamanho ou Estádio

-			_
0.1	0.0	0.0	12.0
0.2	0.1	0.0	0.0
0.0	0.3	0.1	0.0
0.1	0.2	0.4	0.0

λ=1,3752

_			_
0.1	0.0	0.0	12.0
0.1	0.5	0.0	0.0
0.5	0.5	0.5	0.0
0.1	0.1	0.1	0.0

Mosaicos de Perturbação (clareiras, furacões, fogo)

Manchas de perturbação recorrente

Sarukhán, J., Piñero, D. & Martínez-Ramos, M. 1985. Plant demography: A community-level interpretation. In: White, J. (ed.). Studies on Plant Demography. Academic Press, London. p. 17-31.

Mosaicos de Perturbação (clareiras, furacões, fogo)

Os estados do habitat variam no tempo

Santos, F.A.M., Tamashiro, J.Y., Rodrigues, R.R. & Shepherd, G.J. 1996

Mosaicos de Perturbação (clareiras, furacões, fogo)

Dinâmica inclui transições demográficas e de estados do habitat

Cada estado do habitat leva a uma matriz de projeção diferente

Matriz de transição do habitat

Patch type at time t+1		Patch type at time t		
C I	Green	Red	Blue	
Green	0	0.5	1.0	
Red	0.5	0.5	0	
Blue	0.5	0	0	

Projeção da abundância relativa de tipos de habitat no tempo

Estrutura de habitat estável

Mosaicos de habitat temporais

Fixed sequence

Stochastic sequence 2nd set

Stochastic sequence first set

Stochastic sequence 3rd set

Referências

Caswell, H. 1989. Matrix population models. Sinauer. Sunderland.

Enright, N.J., Franco, M. & Silvertown, J. 1995. Comparing plant life histories using elasticity analysis: the importance of life span and the number of life cycle stages. Oecologia 104: 79-84.

Holbrook, N.M. & Putz, F.E. 1989. Influence of neighbors on tree form: effects of lateral shade and prevention of sway on the allometry of *Liquidambar styraciflua* (sweet gum). American Journal of Botany 76: 1740-1749.

Law, R. 1983. A model for the dynamics of a plant population containing individuals classified by age and stage. Ecology 64: 224-230.

de Matos, M.B. & Silva Matos, D.M. 1998. Mathematical constraints on transition matrix elasticity analysis. Journal of Ecology 86: 706-708.

Piñero, D., Martinez-Ramos, M. & Sarukhán, J. 1984. A population model of *Astrocaryum mexicanum* and a sensitivity analysis of its finite rate of increase. Journal of Ecology 72: 977-991.

Silva Matos, D.M., Freckleton, R.P. & Watkinson, A.R. 1999. The role of density dependence in the population dynamics of a tropical palm. Ecology 80; 2635-2650.

Young, T.P. & Perkocha, V. 1994. Treefalls, crown asymmetry, and buttresses. Journal of Ecology. 82: 319-324.

Programa: RAMAS/stage v.1.2

Instruções gerais para uso:

1- Carregue o programa digitando stage quando estiver no diretório.

2- Caso você tenha gravado quando saiu pela última vez do programa, aparecerá o último arquivo que você usou. Nesse caso, digite <F10> e você estará no menu principal. Caso contrário, ao entrar no programa, você estará no menu. Você pode limpar o último arquivo da memória, carregando o arquivo CLEAR (ver abaixo como carregar).

3- As teclas de função básicas no início são <F1> (Help) e <F3> (Carregar). Para sair, utilize <Quit> no menu.

4- Para carregar um arquivo, digite <F3> e aparecerá um menu perguntando o nome do arquivo. Se você digitar <F3> novamente, aparecerá uma lista de arquivos existentes no diretório. Selecione o desejado e carregue o arquivo.

5- Quando quiser sair do programa, digite <Quit> do menu principal. Aparecerá a pergunta se você deseja gravar o que foi feito. Responda como você desejar. Não esqueça de que da próxima vez que você usar o programa, ele iniciará com o arquivo que você usou por último, caso você opte por responder sim.

Procedimento para os exercícios:

1- Do menu principal selecione <General> (Informações Gerais). Aparecerá uma janela. Preencha ou altere os seguintes campos:

Número de Iterações: Defina o número de vezes que você deseja simular a população. Duração: Defina o número de intervalos de tempo que você deseja correr a simulação (o número de intervalos de tempo que você deseja ver o crescimento da população). O intervalo de tempo aqui é em anos. O tempo máximo para projeção é 199 anos.

2- Volte ao menu principal (<F10>) para ir para a próxima janela. Neste exercício, não utilizaremos <Drivers> nem <Parameters>. Para ver o que eles representam, entre nessas janelas e tecle <F1> para uma definição do que significam. Se quiser verificar como <Parameters> funciona, carregue o arquivo LOGISTIC.STG. Este arquivo possui uma definição de <Parameters> para simular o modelo logístico com tempo de resposta.

3- Vá para a janela <Stage>. Defina aí os nomes dos estágios, os valores de número inicial de indivíduos, e as equações de transição. Para ir de um campo a outro, use a tecla <Tab>. Note que todos os nomes de estágios têm que estar definidos. Caso contrário, o programa acusará um erro na equação. Para adicionar um novo estágio, tecle <F5>.

4- Vá para a janela <Tallies>. Defina aí o que você deseja ver como figuras. Defina o nome das variáveis que deseja ver, a freqüência (intervalos de tempo) que deseja ver o que acontece com a variável, e o que você quer incluir como pertencendo à variável definida.

5. Na janela <Network> você irá ver de forma esquemática, as transições que definiu.

6. Na janela <Matrix> você irá ver a matriz correspondente às suas definições de transição.

7. Na janela <Equations> você irá ver todas as equações que estão sendo consideradas no seu modelo.

8. Na janela <Analysis> você poderá observar várias das análises que são possíveis de serem feitas, baseadas na matriz de transição que você criou.

9. <Compute> irá correr a sua simulação.

10. <Views> permitirá que você defina e veja as figuras de acordo com o que definiu que queria ver no passo 4. O mesmo acontece se você usar <Show>. Quando estiver em <Views> você poderá alterar na janela que irá aparecer, o resultado que deseja ver, as variáveis que quer ver (segundo as definições dadas no item 4), a forma pela qual você deseja ver os resultados e assim por diante.

11. <Calculator> é uma calculadora que permite que você faça alguns cálculos.

Exercícios propostos:

1- Tente usar alguns dos arquivos existentes e verifique o que acontece em cada situação. Altere alguns valores e veja o que acontece. Procure sempre fazer uma pergunta, fazer uma previsão do que irá acontecer com a mudança que será feita nos parâmetros, verifique o que aconteceu (teste as suas previsões e tente explicar o que realmente aconteceu.

2- Preste atenção principalmente nas diferentes opções da janela < Analysis>.

3. Como sugestão, utilize os arquivos TEASE.STG e TEASEL.STG. Eles são arquivos baseados nos mesmos dados, apresentando análises diferentes. Verifique as diferenças e tente interpretá-las.

4. Utilize o arquivo TROPICAL.STG. Procure entender o que os dados presentes no arquivo pretendem mostrar. Procure imaginar uma situação amostral de campo para a obtenção desses dados.