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Phylogenetic inference based on
distance methods

THEORY

Yves Van de Peer

5.1 Introduction

In addition to maximum parsimony (MP) and likelihood methods (see Chapters 6,

7 and 8), pairwise distance methods form the third large group of methods to infer

evolutionary trees from sequence data (Fig. 5.1). In principle, distance methods

try to fit a tree to a matrix of pairwise genetic distances (Felsenstein, 1988).

For every two sequences, the distance is a single value based on the fraction of

positions in which the two sequences differ, defined as p-distance (see Chapter 4).

The p-distance is an underestimation of the true genetic distance because some

of the nucleotide positions may have experienced multiple substitution events.

Indeed, because mutations are continuously fixed in the genes, there has been an

increasing chance of multiple substitutions occurring at the same sequence position

as evolutionary time elapses. Therefore, in distance-based methods, one tries to

estimate the number of substitutions that have actually occurred by applying a

specific evolutionary model that makes particular assumptions about the nature

of evolutionary changes (see Chapter 4). When all the pairwise distances have been

computed for a set of sequences, a tree topology can then be inferred by a variety

of methods (Fig. 5.2).

Correct estimation of the genetic distance is crucial and, in most cases, more

important than the choice of method to infer the tree topology. Using an unrealistic

evolutionary model can cause serious artifacts in tree topology, as previously shown
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Character-based methods Non-character-based methods

Methods based on an explicit
model of evolution

Maximum likelihood methods Pairwise distance methods

Methods not based on an
explicit model of evolution

Maximum parsimony methods

Fig. 5.1 Pairwise distance methods are non-character-based methods that make use of an explicit
substitution model.

Dissimilarities

Evolutionary
distances

Step 1
Estimation of evolutionary distances

Step 2
Infer tree topology on the basis of estimated evolutionary distances

Convert dissimilarity into evolutionary distance
by correcting for multiple events per site, e.g.
Jukes & Cantor (1969):
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Fig. 5.2 Distance methods proceed in two steps. First, the evolutionary distance is computed for
every sequence pair. Usually, this information is stored in a matrix of pairwise distances.
Second, a tree topology is inferred on the basis of the specific relationships between the
distance values.

in numerous studies (e.g. Olsen, 1987; Lockhart et al., 1994; Van de Peer et al., 1996;

see also Chapter 10). However, because the exact historical record of events that

occurred in the evolution of sequences is not known, the best method for estimating

the genetic distance is not necessarily self-evident.

Substitution models are discussed in Chapters 4 and 10. The latter discusses how

to select the best-fitting evolutionary model for a given data set of aligned nucleotide

or amino acid sequences in order to get accurate estimates of genetic distances. In

the following sections, it is assumed that genetic distances were estimated using



144 Yves Van de Peer

an appropriate evolutionary model, and some of the methods used for inferring

tree topologies on the basis of these distances are briefly outlined. However, by

no means should this be considered a complete discussion of distance methods;

additional discussions are in Felsenstein (1982), Swofford et al. (1996), Li (1997),

and Page & Holmes (1998).

5.2 Tree-inference methods based on genetic distances

The main distance-based tree-building methods are cluster analysis and minimum

evolution. Both rely on a different set of assumptions, and their success or failure

in retrieving the correct phylogenetic tree depends on how well any particular data

set meets such assumptions.

5.2.1 Cluster analysis (UPGMA and WPGMA)

Clustering methods are tree-building methods that were originally developed to

construct taxonomic phenograms (Sokal & Michener, 1958; Sneath & Sokal, 1973);

that is, trees based on overall phenotypic similarity. Later, these methods were

applied to phylogenetics to construct ultrametric trees. Ultrametricity is satisfied

when, for any three taxa, A, B, and C,

dAC ≤ max(dAB, dBC). (5.1)

In practice, (5.1) is satisfied when two of the three distances under consideration

are equal and as large (or larger) as the third one. Ultrametric trees are rooted trees

in which all the end nodes are equidistant from the root of the tree, which is only

possible by assuming a molecular clock (see Chapter 11). Clustering methods such

as the unweighted-pair group method with arithmetic means (UPGMA) or the

weighted-pair group method with arithmetic means (WPGMA) use a sequential

clustering algorithm. A tree is built in a stepwise manner, by grouping sequences or

groups of sequences – usually referred to as operational taxonomic units (OTUs) –

that are most similar to each other; that is, for which the genetic distance is the

smallest. When two OTUs are grouped, they are treated as a new single OTU

(Box 5.1). From the new group of OTUs, the pair for which the similarity is highest

is again identified, and so on, until only two OTUs are left. The method applied

in Box 5.1 is actually the WPGMA, in which the averaging of the distances is not

based on the total number of OTUs in the respective clusters. For example, when

OTUs A, B (which have been grouped before), and C are grouped into a new node

“u,” then the distance from node “u” to any other node “k” (e.g. grouping D and

E) is computed as follows:

duk = d(A,B)k + dCk

2
(5.2)
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Box 5.1 Cluster analysis (Sneath & Sokal, 1973)
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Cluster analysis proceeds as follows:

(1) Group together (cluster) these OTUs for which the distance is minimal; in this case
group together A and B. The depth of the divergence is the distance between A and
B divided by 2.

1
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(2) Compute the distance from cluster (A, B) to each other OTU

(AB)
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C D Ed(AB)C = (dAC + dBC)/2 = 4
d(AB)D = (dAD + dBD)/2 = 6
d(AB)E = (dAE + dBE)/2 = 6
d(AB)F = (dAF + dBF)/2 = 8

Repeat steps 1 and 2 until all OTUs are clustered (repeat until N = 2)

N = N − 1 = 5

(1) Group together (cluster) these OTUs for which the distance is minimal, e.g. group
together D and E. Alternatively, (AB) could be grouped with C.

2

2
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Box 5.1 (cont.)

(2) Compute the distance from cluster (D, E) to each other OTU (cluster)

(AB) (DE)

4
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(DE)
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C
d(DE)(AB) = (dD(AB) + dE(AB))/2 = 6
d(DE)C = (dDC + dEC)/2 = 6
d(DE)F = (dDF + dEF)/2 = 8

N = N − 1 = 4

(1) Group together these OTUs for which the distance is minimal, e.g. group (A, B)
and C

1
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(2) Compute the distance from cluster (A, B, C) to each other OTU (cluster)

(ABC) (DE)
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(DE)

d(ABC)(DE) = (d(AB)(DE) + dC(DE))/2 = 6
d(ABC)F = (d(AB)F + dCF)/2 = 8

N = N − 1 = 3

(1) Group together these OTUs for which the distance is minimal, e.g. group (A, B, C)
and (D, E)
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(2) Compute the distance from cluster (A, B, C, D, E) to OTU F

F

(ABC), (DE)

8

d(ABCDE)F = (d(ABC)F + d(DE)F)/2 = 8

N = N − 1 = 2

1
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1
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2

2

2

4
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D
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A

Conversely, in UPGMA, the averaging of the distances is based on the number

of OTUs in the different clusters; therefore, the distance between “u” and “k” is

computed as follows:

duk =
(

NAB d(A,B)k + NC dCk

)
(NAB + NC )

(5.3)

where NAB equals the number of OTUs in cluster AB (i.e. 2) and NC equals the

number of OTUs in cluster C (i.e. 1). When the data are ultrametric, UPGMA and

WPGMA have the same result. However, when the data are not ultrametric, they

can differ in their inferences.

Until about 15 years ago, clustering was often used to infer evolutionary trees

based on sequence data, but this is no longer the case. Many computer-simulation

studies have shown that clustering methods such as UPGMA are extremely sensitive

to unequal rates in different lineages (e.g. Sourdis & Krimbas, 1987; Huelsenbeck &

Hillis, 1993). To overcome this problem, some have proposed methods that con-

vert non-ultrametric distances into ultrametric distances. Usually referred to as

transformed distance methods, these methods correct for unequal rates among dif-

ferent lineages by comparing the sequences under study to a reference sequence

or an outgroup (Farris, 1977; Klotz et al., 1979; Li, 1981). Once the distances

are made ultrametric, a tree is constructed by clustering, as explained previously.

Nevertheless, because there are now better and more effective methods to cope

with non-ultrametricity and non-clock-like behavior, there is little reason left to
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B D

a

b

c

d

e

dAB = a + b
dCD = c + d

dAC = a + e + c
dBD = b + e + d

dAD = a + e + d
dBC = b + e + a

dAB + dCD ≤ min    (dAC + dBD , dAD + dBC)

(a + b+ c+ d) ≤ min [ (a + b+ c+ d + 2e) , (a + b+ c+ d + 2e) ]

Fig. 5.3 Four-point condition. Letters on the branches of the unrooted tree represent branch lengths.
The function min[ ] returns the minimum among a set of values.

use cluster analysis or transformed distance methods to infer distance trees for

nucleotide or amino acid sequence data.

5.2.2 Minimum evolution and neighbor-joining

Because of the serious limitations of ordinary clustering methods, algorithms were

developed that reconstruct so-called additive distance trees. Additive distances sat-

isfy the following condition, known as the four-point metric condition (Buneman,

1971): for any four taxa, A, B, C, and D,

dAB + dCD ≤ max(dAC + dBD, dAD + dBC) (5.4)

Only additive distances can be fitted precisely into an unrooted tree such that

the genetic distance between a pair of OTUs equals the sum of the lengths of the

branches connecting them, rather than an average, as in the case of cluster analysis.

Why (5.4) needs to be satisfied is explained by the example shown in Fig. 5.3. When

A, B, C, and D are related by a tree in which the sum of branch lengths connecting

two terminal taxa is equal to the genetic distance between them, such as the tree in

Fig. 5.3, dAB + dCD is always smaller or equal than the minimum between dAC +
dBD and dAD + dBC (see Fig. 5.3). The equality only occurs when the four sequences

are related by a star-like tree; that is, only when the internal branch length of the

tree in Fig. 5.3 is e = 0 (see Fig. 5.3). If (5.4) is not satisfied, A, B, C, and D cannot

be represented by an additive distance tree because, to maintain the additivity of

the genetic distances, one or more branch lengths of any tree relating them should

be negative, which would be biologically meaningless. Real data sets often fail

to satisy the four-point condition; this problem is the origin of the discrepancy

between actual distances (i.e. those estimated from pairwise comparisons among

nucleotide or amino acid sequences) and tree distances (i.e. those actually fitted

into a tree) (see Section 5.2.3).

If the genetic distances for a certain data set are ultrametric, then both the

ultrametric tree and the additive tree will be the same if the additive tree is rooted
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at the same point as the ultrametric tree. However, if the genetic distances are

not ultrametric due to non-clock-like behavior of the sequences, additive trees

will almost always be a better fit to the distances than ultrametric trees. However,

because of the finite amount of data available when working with real sequences,

stochastic errors usually cause deviation of the estimated genetic distances from

perfect tree additivity. Therefore, some systematic error is introduced and, as a

result, the estimated tree topology may be incorrect.

Minimum evolution (ME) is a distance method for constructing additive trees

that was first described by Kidd & Sgaramella-Zonta (1971); Rzhetsky & Nei (1992)

described a method with only a minor difference. In ME, the tree that minimizes

the lengths of the tree, which is the sum of the lengths of the branches, is regarded

as the best estimate of the phylogeny:

S =
2n−3∑
i=1

vi (5.5)

where n is the number of taxa in the tree and vi is the ith branch (remember that

there are 2n–3 branches in an unrooted tree of n taxa). For each tree topology,

it is possible to estimate the length of each branch from the estimated pairwise

distances between all OTUs. In this respect, the method can be compared with the

maximum parsimony (MP) approach (see Chapter 8), but in ME, the length of

the tree is inferred from the genetic distances rather than from counting individual

nucleotide substitutions over the tree (Rzhetsky & Nei, 1992, 1993; Kumar, 1996).

The minimum tree is not necessarily the “true” tree. Nei et al. (1998) have shown

that, particularly when few nucleotides or amino acids are used, the “true” tree

may be larger than the minimum tree found by the optimization principle used

in ME and MP. A drawback of the ME method is that, in principle, all different

tree topologies have to be investigated to find the minimum tree. However, this

is impossible in practice because of the explosive increase in the number of tree

topologies as the number of OTUs increases (Felsenstein, 1978); an exhaustive

search can no longer be applied when more than ten sequences are being used (see

Chapter 1).

A good heuristic method for estimating the ME tree is the neighbor-joining (NJ)

method, developed by Saitou & Nei (1987) and modified by Studier & Keppler

(1988). Because NJ is conceptually related to clustering, but without assuming a

clock-like behavior, it combines computational speed with uniqueness of results.

NJ is today the method most commonly used to construct distance trees.

Box 5.2 is an example of a tree constructed with the NJ method. The method

adopts the ME criterion and combines a pair of sequences by minimizing the

S value (see 5.5) in each step of finding a pair of neighboring OTUs. Because

the S value is not minimized globally (Saitou & Nei, 1987; Studier & Keppler, 1988),
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Box 5.2 The neighbor-joining method (Saitou & Nei, 1987; modified from Studier
& Keppler, 1988)

A1

1

1

1

1
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2

3

2

4
B

C

D

E

F

Hypothetical tree topology: since the
divergence of sequences A and B, B has
accumulated four times as many
mutations as sequence A.

Suppose the following matrix of pairwise evolutionary distances:

A B

B 5

4

107
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8

9 6

8 9 8

5

7

11

7C

D

E

F

C D E
Clustering methods (discussed in Box 5.1)
would erroneously group sequences A and
C, since they assume clock-like behavior.
Although sequences A and C look
more similar, sequences A and B
are more closely related.

2

2
A

C

Neighbor-joining proceeds as follows:

(1) Compute the net divergence r for every endnode (N = 6)

rA = 5 + 4 + 7 + 6 + 8 = 30 rD = 38
rB = 5 + 7 + 10 + 9 + 11 = 42 rE = 34
rC = 32 rF = 44

(2) Create a rate-corrected distance matrix; the elements are defined by Mi = di j −
(ri + ri )/(N − 2)

MAB = dAB − (rA + rB)/(N − 2) = 5 − (30 + 42)/4 = −13

MAC = . . . .

. . .
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A

B –13

–11.5

–10 –10 –10.5

–10 –10 –10.5
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–10.5 –10.5 –11.5 –11.5–11
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B C D E
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D

B

F
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C

–13

(3) Define a new node that groups OTUs i and j for which Mi is minimal
For example, sequences A and B are neighbors and form a new node U (but, alter-
natively, OTUs D and E could have been joined; see further)

(4) Compute the branch lengths from node U to A and B

SAU = dAB/2 + (rA − rB)/2(N − 2) = 1

SBU = dAB − SAU = 4

or alternatively

SBU = dAB/2 + (rB − rA)/2(N − 2) = 4

SAU − dAB − SBU = 1

(5) Compute new distances from node U to each other terminal node

dCU = (dAC + dBC − dAB)/2 = 3

dDU = (dAD + dBD − dAB)/2 = 6

dEU = (dAE + dBE − dAB)/2 = 5

dFU = (dAF + dBF − dAB)/2 = 7

U

C 3

6 7

5 6 5

7 8 9 8

D

E

F

C D E C

U

A

1

4

B
F

D

E

(6) N = N − 1; repeat step 1 through 5
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Box 5.2 (cont.)

(1) Compute the net divergence r (4) Compute the branch lengths from
for every endnode (N = 5) node V to C and U

rB = 21 rE = 24 SUV = dCU/2 + (rU − rC)/2(N − 2) = 1
rC = 24 rF = 32 SCV = dCU − SUV = 2
rD = 27

(2) Compute the modified (5) Compute distances from V to
distances: each other terminal node

dDV = (dDU + dCB − dCU)/2 = 5
dEV = (dEU + dCB − dCU)/2 = 4
dFV = (dFU + dCF − dCU)/2 = 6

U

C –12

–10 –11

–10 –10 –12

–10.7 –10.7 –10.7 –10.7

D

E

F

C D E

V

D 5

E 4 5

F 6 9 8

D E E

F

D

A

1

2

U
V

C

4

B

(3) Define a new node: e.g. U and C (6) N = N − 1; repeat step 1 through 5
are neighbors and form a new
node V; alternatively, D and E
could be joined

(1) Compute the net divergence r (4) Compute the branch lengths from
for every endnode (N = 4) node W to E and D

rV = 15 rE = 17 SDW = dDE/2 + (rD − rE)/2(N − 2) = 3
rD = 19 rF = 23 SDW = dDE − SDW = 2

(2) Compute the modified (5) Compute distances from W to
distances each other terminal node

dVW = (dDV + dEV − dDE)/2 = 2
dFW = (dDr + dgr − dDE)/2 = 6V

D –12

–12

–12 –12

E

F

D E

–13

–13 W

V 2

F 6 6

V

D

E

W

3

2

(3) Define a new node: e.g. D and E are (6) N = N − 1; repeat step 1 through 5
neighbors and form a new node W;
alternatively, F and V could be joined
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(1) Compute the net divergence r (4) Compute the branch lengths from
for every endnode (N = 3) X to V and F

rV = 8 rF = 17 rW = 8 SVX = dFV/2 + (rV − rF)/2(N − 2) = 1
SFX = dFV − SVX = 5

(2) Compute the modified distances (5) Compute distances from X to
each other terminal node

dWX = (dFW + dVW − dFV)/2 = 1W

V

F

V

–14

–14 –14

(3) Define a new node: e.g. V and F are
neighbors and form a new node X;
Alternatively, W and V could be
joined, or W and F could be joined

W

D

W

X

1
1

1
1

1
2 4

4

2

3

V
U

A

B

E

F

C

1X

1

4

A

B

C

D

E

F

2

2

4

3

1

1

1

1

If the root is placed between F and (A, B, C, D, and E),
the “true” rooted tree topology is obtained

the NJ tree may not be the same as the ME tree if pairwise distances are not

additive (Kumar, 1996). However, NJ trees have proven to be the same or similar

to the ME tree (Saitou & Imanishi, 1989; Rzhetsky & Nei, 1992, 1993; Russo

et al., 1996; Nei et al., 1998). Several methods have been proposed to find ME trees,

starting from an NJ tree but evaluating alternative topologies close to the NJ tree
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by conducting local rearrangements (e.g. Rzhetsky & Nei, 1992). Nevertheless, it is

questionable whether this approach is really worth considering (Saitou & Imanishi,

1989; Kumar, 1996), and it has been suggested that combining NJ and bootstrap

analysis (Felsenstein, 1985) might be the best way to evaluate trees using distance

methods (Nei et al., 1998).

Recently, alternative versions of the NJ algorithm have been proposed, includ-

ing BIONJ (Gascuel, 1997), generalized neighbor-joining (Pearson et al., 1999),

weighted neighbor-joining or weighbor (Bruno et al., 2000), neighbor-joining
maximum-likelihood (NJML; Ota & Li, 2000), QuickJoin (Mailund & Pedersen,

2004), multi-neighbor-joining (Silva et al., 2005) and relaxed neighbor-joining
(Evans et al., 2006). BIONJ and weighbor both consider that long genetic dis-

tances present a higher variance than short ones when distances from a newly

defined node to all other nodes are estimated (see Box 5.2). This should result

in higher accuracy when distantly related sequences are included in the analy-

sis. Furthermore, the weighted neighbor-joining method of Bruno et al. (2000)

uses a likelihood-based criterion rather than the ME criterion of Saitou & Nei

(1987) to decide which pair of OTUs should be joined. NJML divides an initial

neighbor-joining tree into subtrees at internal branches having bootstrap values

higher than a threshold (Ota & Li, 2000). A topology search is then conducted

using the maximum-likelihood method only re-evaluating branches with a boot-

strap value lower than the threshold. The generalized neighbor-joining method of

Pearson et al. (1999) keeps track of multiple, partial, and potentially good solutions

during its execution, thus exploring a greater part of the tree space. As a result,

the program is able to discover topologically distinct solutions that are close to

the ME tree. Multi-neighbor-joining also keeps various partial solutions resulting

in a higher chance to recover the minimum evolution tree (Silva et al., 2005).

QuickJoin and relaxed neighbor-joining use heuristics to improve the speed of

execution, making them suitable for large-scale applications (Mailund & Pedersen,

2004; Evans et al., 2006).

Figure 5.4 shows two trees based on evolutionary distances inferred from 20

small subunit ribosomal RNA sequences (Van de Peer et al., 2000a). The tree in

Fig. 5.4a was constructed by clustering (UPGMA) and shows some unexpected

results. For example, the sea anemone, Anemonia sulcata, clusters with the fungi

rather than the other animals, as would have been expected. Furthermore, neither

the basidiomycetes nor the ascomycetes form a clear-cut monophyletic grouping.

In contrast, on the NJ tree all animals form a highly supported monophyletic

grouping, and the same is true for basidiomycetes and ascomycetes. The NJ tree

also shows why clustering could not resolve the right relationships. Clustering

methods are sensitive to unequal rates of evolution in different lineages; as is

clearly seen, the branch length of Anemonia sulcata differs greatly from that of the
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(a)

(b)

Fig. 5.4 Phylogenetic trees based on the comparison of 20 small subunit ribosomal RNA sequences.
Animals are indicated by light gray shading; dark gray shading indicates the basidiomycetes.
The scales on top measure evolutionary distance in substitutions per nucleotide. The red
alga Palmaria palmata was used to root the tree. (a) Ultrametric tree obtained by clustering.
(b) Neighbor-joining tree.
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other animals. Also, different basidiomycetes have evolved at different rates and,

as a result, they are split into two groups in the tree obtained by clustering (see

Fig. 5.4a).

5.2.3 Other distance methods

It is possible for every tree topology to estimate the length of all branches

from the estimated pairwise distances between all OTUs (e.g. Fitch & Margo-

liash, 1967; Rzhetsky & Nei, 1993). However, when summing the branch lengths

between sequences, there is usually some discrepancy between the distance obtained

(referred to as the tree distance or patristic distance) and the distance as estimated

directly from the sequences themselves (the observed or actual distances) due to

deviation from tree additivity (see Section 5.2.2). Whereas ME methods try to find

the tree for which the sum of the lengths of branches is minimal, other distance

methods have been developed to construct additive trees depending on good-

ness of fit measures between the actual distances and the tree distances. The best

tree, then, is that tree that minimizes the discrepancy between the two distance

measures. When the criterion for evaluation is based on a least-squares fit, the

goodness of fit F is given by the following:

F =
∑
i, j

wi j (Di j − di j )
2 (5.6)

where Dij is the observed distance between i and j, dij is the tree distance between

i and j, and wij is different for different methods. For example, in the Fitch and

Margoliash method (1967), wij equals 1/D2
i j ; in the Cavalli-Sforza and Edwards

approach (1967), wij equals 1. Other values for wij are also possible (Swofford et al.,

1996) and using different values can influence which tree is regarded as the best. To

find the tree for which the discrepancy between actual and tree distances is minimal,

one has in principle to investigate all different tree topologies. However, as with

ME, distance methods that are based on the evaluation of an explicit criterion, such

as goodness of fit between observed and tree distances, suffer from the explosive

increase in the number of different tree topologies as more OTUs are examined.

Therefore, heuristic approaches, such as stepwise addition of sequences and local

and global rearrangements, must be applied when trees are constructed on the

basis of ten or more sequences (e.g. Felsenstein, 1993).

5.3 Evaluating the reliability of inferred trees

The two techniques used most often to evaluate the reliability of the inferred tree

or, more precisely, the reliability of specific clades in the tree are bootstrap analysis

(Box 5.3) and jackknifing (see Section 5.3.2).



157 Phylogenetic inference based on distance methods: theory

5.3.1 Bootstrap analysis

Bootstrap analysis is a widely used sampling technique for estimating the statistical

error in situations in which the underlying sampling distribution is either unknown

or difficult to derive analytically (Efron & Gong, 1983). The bootstrap method offers

a useful way to approximate the underlying distribution by resampling from the

original data set. Felsenstein (1985) first applied this technique to the estimation

of confidence intervals for phylogenies inferred from sequence data. First, the

sequence data are bootstrapped, which means that a new alignment is obtained

from the original by randomly choosing columns from it with replacements. Each

column in the alignment can be selected more than once or not at all until a

new set of sequences, a bootstrap replicate, the same length as the original one

has been constructed. Therefore, in this resampling process, some characters will

not be included at all in a given bootstrap replicate and others will be included

once, twice, or more. Second, for each reproduced (i.e. artificial) data set, a tree is

constructed, and the proportion of each clade among all the bootstrap replicates

is computed. This proportion is taken as the statistical confidence supporting the

monophyly of the subset.

Two approaches can be used to show bootstrap values on phylogenetic trees. The

first summarizes the results of bootstrapping in a majority-rule consensus tree (see

Box 5.3, Option 1), as done, for example, in the Phylip software package (Felsen-

stein, 1993). The second approach superimposes the bootstrap values on the tree

obtained from the original sequence alignment (see Box 5.3, Option 2). In this case,

all bootstrap trees are compared with the tree based on the original alignment and

the number of times a cluster (as defined in the original tree) is also found in the

bootstrap trees is recorded. Although in terms of general statistics the theoretical

foundation of the bootstrap has been well established, the statistical properties of

the bootstrap estimation applied to sequence data and evolutionary relationships

are less well understood; several studies have reported on this problem (Zharkikh &

Li, 1992a, b; Felsenstein & Kishino, 1993; Hillis & Bull, 1993). Bootstrapping itself

is a neutral process that only reflects the phylogenetic signal (or noise) in the

data as detected by the tree-construction method used. If the tree-construction

method makes a bad estimate of the phylogeny due to systematic errors (caused

by incorrect assumptions in the tree-construction method), or if the sequence

data are not representative of the underlying distribution, the resulting confidence

intervals obtained by the bootstrap are not meaningful. Furthermore, if the

original sequence data are biased, the bootstrap estimates will be too. For example,

if two sequences are clustered together because they both share an unusually high

GC content, their artificial clustering will be supported by bootstrap analysis at

a high confidence level. Another example is the artificial grouping of sequences

with an increased evolutionary rate. Due to the systematic underestimation of
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Box 5.3 Bootstrap Analysis (Felsenstein, 1985)
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the genetic distances when applying an unrealistically simple substitution model,

distant species either will be clustered together or drawn toward the root of the

tree. When the bootstrap trees are inferred on the basis of the same incorrect

evolutionary model, the early divergence of long branches or the artificial clustering

of long branches (the so-called long-branch attraction) will be supported at a

high bootstrap level. Therefore, when there is evidence of these types of artifacts,

bootstrap results should be interpreted with caution.

In conclusion, bootstrap analysis is a simple and effective technique to test the

relative stability of groups within a phylogenetic tree. The major advantage of the

bootstrap technique is that it can be applied to basically all tree-construction
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methods, although it must be remembered that applying the bootstrap method

multiplies the computer time needed by the number of bootstrap samples

requested. Between 200 and 2000 resamplings are usually recommended (Hedges,

1992; Zharkikh & Li, 1992a). Overall, under normal circumstances, considerable

confidence can be given to branches or groups supported by more than 70% or

75%; conversely, branches supported by less than 70% should be treated with cau-

tion (Zharkikh & Li, 1992a; see also Van de Peer et al., 2000b for a discussion about

the effect of species sampling on bootstrap values).

5.3.2 Jackknifing

An alternative resampling technique often used to evaluate the reliability of spe-

cific clades in the tree is the so-called delete-half jackknifing or jackknife. Jack-

knife randomly purges half of the sites from the original sequences so that the

new sequences will be half as long as the original. This resampling procedure

typically will be repeated many times to generate numerous new samples. Each

new sample (i.e. new set of sequences) – no matter whether from bootstrapping or

jackknifing – will then be subjected to regular phylogenetic reconstruction. The

frequencies of subtrees are counted from reconstructed trees. If a subtree appears

in all reconstructed trees, then the jackknifing value is 100%; that is, the strongest

possible support for the subtree. As for bootstrapping, branches supported by a

jackknifing value less than 70% should be treated with caution.

5.4 Conclusions

Pairwise distance methods are tree-construction methods that proceed in two steps.

First, for all pairs of sequences, the genetic distance is estimated (Swofford et al.,

1996) from the observed sequence dissimilarity (p-distance) by applying a cor-

rection for multiple substitutions. The genetic distance thus reflects the expected

mean number of changes per site that have occurred, since two sequences diverged

from their common ancestor. Second, a phylogenetic tree is constructed by con-

sidering the relationship between these distance values. Because distance methods

strongly reduce the phylogenetic information of the sequences (to basically one

value per sequence pair), they are often regarded as inferior to character-based

methods (see Chapters 6, 7 and 8). However, as shown in many studies, this is not

necessarily so, provided that the genetic distances were estimated accurately (see

Chapter 10). Moreover, contrary to maximum parsimony, distance methods have

the advantage – which they share with maximum-likelihood methods – that an

appropriate substitution model can be applied to correct for multiple mutations.

Popular distance methods such as the NJ and the Fitch and Margoliash methods

have long proven to be quite efficient in finding the “true” tree topologies or those
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that are close (Saitou & Imanishi, 1989; Huelsenbeck & Hillis, 1993; Charleston

et al., 1994; Kuhner & Felsenstein, 1994; Nei et al., 1998). NJ has the advantage of

being very fast, which allows the construction of large trees including hundreds

of sequences; this significant difference in speed of execution compared to other

distance methods has undoubtedly accounted for the popularity of the method

(Kuhner & Felsenstein, 1994; Van de Peer & De Wachter, 1994).

Distance methods are implemented in many different software packages, includ-

ing Phylip (Felsenstein, 1993), Mega4 (Kumar et al., 1993), Treecon (Van de Peer

& Dewachter, 1994), Paup* (Swofford, 2002), Dambe (Xia, 2000), and many more.
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5.5 Programs to display and manipulate phylogenetic trees

In the following sections, we will discuss two applications that are useful for

displaying, editing, and manipulating phylogenetic trees: TreeView and FigTree.
TreeView 1.6.6 (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html) is a user-

friendly and freely available program for high-quality display of phylogenetic trees,

such as the ones reconstructed using Phylip, Mega, Tree-Puzzle (Chapter 6) or

Paup* (Chapter 8). The program also implements some tree manipulation func-

tionalities, for example, defining outgroups and re-rooting trees. Program versions

available for MacOsX and PC use almost identical interfaces; a manual and instal-

lation instructions are available on the website, but note that a printer driver

needs to be installed to run the program under Windows. FigTree is a freeware

application for visualization and sophisticated editing of phylogenetic trees. Trees

can be exported in PDF format for publication quality figures or saved in nexus

format with editing information included as a FigTree block. The program is writ-

ten in JAVA and both MacOSX and Windows executables can be downloaded from

http://tree.bio.ed.ac.uk/software/figtree/. The program Mega, discussed in the pre-

vious chapter, also contains a built-in module for displaying and manipulation of

phylogenetic trees.

Phylogenetic trees are almost always saved in one of two formats: NEWICK or

NEXUS. The NEWICK standard for a computer-readable tree format makes use

of the correspondence between trees and nested parentheses; an example for a

four-taxon tree is shown in Fig. 5.5. In this notation, a tree is basically a string of

balanced pairs of parenthesis with every two balanced parentheses representing an

internal node. Branch lengths for terminal branches and internal nodes are written

after a colon. The NEXUS format incorporates NEWICK formatting along with

other commands and usually has a separate taxa-definition block (see Box 8.4 for

more details on the NEXUS alignment format). The NEXUS equivalent for the tree

in Fig. 5.5 with branch lengths is:

#NEXUS

Begin trees;

Translate

1 A,

2 B,

3 C,

161
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A

B

C

D

0.2

0.2

0.1

0.3

0.4

( ( A:0.1,B:0.2) :0.2,  (C:0.3,D:0.4) )

((A,B),(C,D))
A                 C

B                 D

Fig. 5.5 NEWICK representation of phylogenetic trees. A hypothetical unrooted tree of four taxa (A,
B, C, and D) with numbers along the branches indicating estimated genetic distances and
its description in NEWICK format (see text for more details).

4 D,

;

tree PAUP_1 = [&U] ((1:0.1,2:0.2):0.2,(3:0.3,4:0.4));

End;

5.6 Distance-based phylogenetic inference in Phylip

The Phylip software package implements four different distance-based tree-

building methods: the Neighbour-Joining (NJ) and the UPGMA methods, car-

ried out by the program Neighbor.exe; the Fitch–Margoliash method, carried

out by the program Fitch.exe; and the Fitch and Margoliash method assuming

a molecular clock, carried out by the program Kitch.exe. The UPGMA method

and the algorithm implemented in the program Kitch.exe both assume ultra-

metricity of the sequences in the data set, i.e. that the sequences are contem-

poraneous and accumulate mutations over time at a more or less constant rate. As

discussed above, ultrametric methods tend to produce less reliable phylogenetic

trees when mutations occur at significantly different rates in different lineages.
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Non-ultrametric methods, such as NJ or Fitch–Margoliash, do not assume a molec-

ular clock, and they are better in recovering the correct phylogeny in situations when

different lineages exhibit a strong heterogeneity in evolutionary rates. Chapter 11

will discuss how to test the molecular clock hypothesis for contemporaneously and

serially sampled sequences. However, the statistical evaluation of the molecular

clock and the substitution model best fitting the data (see previous chapter and

Chapter 10) require the knowledge of the tree topology relating the operational

taxonomic units (OTUs, i.e. the taxa) under investigation. Therefore, the first step

in phylogenetic studies usually consists of constructing trees using a simple evo-

lutionary model, like the JC69 or the Kimura 2-parameter model (Kimura, 1980),

and tree-building algorithms not assuming a molecular clock. The reliability of

each clade in the tree is then tested with bootstrap analysis or Jackknifing (see

Section 5.3). In this way it is possible to infer one or more trees that, although

not necessarily the true phylogeny, are reasonable hypotheses for the data.

Such “approximate” trees are usually appropriate to test a variety of evolution-

ary hypotheses using maximum likelihoods methods, including the model of

nucleotide substitution and the molecular clock (see Chapters 10 and 11). More-

over, when a “reasonable” tree topology is known, the free parameters of any

model, for example, the transition/transversion ratio or the shape parameter α

of the �-distribution (see previous chapter), can be estimated from the data set

by maximum likelihood methods. These topics will be covered in Chapters 6

and 10.

In what follows, we will use the Windows versions of Phylip, Mega, TreeView
and FigTree. However, the exercises could also be carried out under MacOSX using

the Mac executables of each application (Phylip, TreeView and FigTree) or using

a virtual PC emulator (Mega). The data sets required for the exercises can be

downloaded from www.thephylogenetichandbook.org.

5.7 Inferring a Neighbor-Joining tree for the primates data set

To infer a NJ tree using the program Neighbor.exe from the Phylip package for the

primates alignment (primates.phy file: alignment in sequential Phylip format),

an input file with pairwise evolutionary distances is required. Therefore, before

starting the neighbor-joining program, first calculate the distance matrix using

the program DNAdist.exe, as explained in the previous chapter, employing the

F84 model and an empirical transition/transversion ratio of 2. The matrix in the

outfile is already in the appropriate format, and it can be used directly as input

file for Neighbor.exe. Rename the outfile file to infile and run Neighbor.exe
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by double-clicking the application’s icon in the exe folder within the Phylip folder;

the following menu will appear:

Neighbor-Joining/UPGMA method version 3.66

Settings for this run:

N Neighbor-joining or UPGMA tree? Neighbor-joining

O Outgroup root? No, use as

outgroup species 1

L Lower-triangular data matrix? No

R Upper-triangular data matrix? No

S Subreplicates? No

J Randomize input order of species? No. Use input order

M Analyze multiple data sets? No

0 Terminal type (IBM PC, ANSI, none)? IBM PC

1 Print out the data at start of run No

2 Print indications of progress of run Yes

3 Print out tree Yes

4 Write out trees onto tree file? Yes

Y to accept these or type the letter for one to change

Option N allows the user to choose between NJ and UPGMA as tree-building

algorithm. OptionO asks for an outgroup. Since NJ trees do not assume a molecular

clock, the choice of an outgroup merely influences the way the tree is drawn; for now,

leave option O unchanged. Options L andR allow the user to use as input a pairwise

distance matrix written in lower-triangular or upper-triangular format. The rest of

the menu is self-explanatory: enter Y to start the computation. Outputs are written

into outfile and outtree, respectively. The content of the outfile can be

explored using a text editor and contains a description of the tree topology and

a table with the branch lengths. The outtree contains a description of the tree

in the so-called NEWICK format (see Fig. 5.5). Run TreeView.exe and select

Open from the File menu. Choose All Files in Files of type and open

the outtree just created in the exe sub folder of the Phylip folder. The tree in

Fig. 5.6a will appear. At the top of the TreeView window a bar with four buttons

(see Fig. 5.6a) indicates the kind of tree graph being displayed. The highlighted

button indicates that the tree is shown as a cladogram, which only displays the

phylogenetic relationships among the taxa in the data set. In this kind of graph

branch lengths are not drawn proportionally to evolutionary distances so that only

the topology of the tree matters. To visualize the phylogram (i.e. the tree with

branch lengths drawn proportionally to the number of nucleotide substitutions

per site along each lineage) click the last button to the right of the bar at the top of

the window. The tree given in Fig. 5.6b will appear within the TreeView window.

This time, branch lengths are drawn proportionally to genetic distances and the
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Fig. 5.6 Different TreeView displays for the Neighbor-joining tree of the Primates data set. Genetic
distances are calculated with the F84 model with an empirical transition/transversion ratio
of 2. (a) Slanted cladogram. (b) Rooted Phylogram. The scale on bottom represents genetic
distances in substitutions per nucleotide. (c) Unrooted phylogram. The scale on top repre-
sents genetic distances in substitutions per nucleotide. Note that, even if the trees in panel
(a) and (b) appear to be rooted, the NJ method actually infers unrooted tree topologies.
Therefore, the position of the root is meaningless and the trees shown in A and B should
be considered equivalent to the one given in panel (c) (see text for more details).
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bar at the bottom of the tree indicates a length corresponding to 0.1 nucleotide

substitutions per site.

It is important to keep in mind that a NJ tree is unrooted, and the fact that the

Chimp and Human sequences appear to be the first to branch off does not mean

that these are in fact the oldest lineages! The unrooted tree can be displayed by

clicking on the first button to the left of the bar at the top of theTreeViewwindow

(see Fig. 5.6c). The unrooted phylogram clearly shows three main monophyletic

clades (i.e. group of taxa sharing a common ancestor). The first one, at the bottom

of the phylogram (Fig. 5.6c) includes DNA sequences from the so-called New

World monkeys: woolly monkey (Woolly), spider monkey (Spider), Bolivian red

howler (Howler), white-faced saki (Saki), Bolivian grey titi (Titi), tamarin, pygmy

marmoset (PMarmoset), squirrel monkey (Squirrel). A second monophyletic clade

on the top left of the phylogram includes sequences from Old World monkeys:

African green monkey (AGM), baboon (Baboon), tantalus monkey (Tant), rhesus

monkey (Rhes), patas monkey (Patas), dour langur (DLangur), kikuyu colobus

(Colobus). The Old World monkeys clade appears to be more closely related to

the third monophyletic clade shown on the top right of the tree in Fig. 5.6c,

which includes DNA sequences from the Hominids group: Gibbon, Orangutan,

Gorilla, Chimp, and Human. If we assume a roughly constant evolutionary rate

among these three major clades, the branch lengths in Fig. 5.6b and c suggest

that Hominids and Old World monkeys have diverged more recently and the root

of the tree should be placed on the lineage leading to the New World monkeys.

This observation is in agreement with the estimated divergence time between Old

World monkeys and Hominids dating back to about 23 million years ago, and the

estimated split between New World monkeys and Old World monkeys dating back

to about 33 millions years ago (Sawyer et al., 2005). This confirms that we can place

the root of the tree on the branch connecting the New World monkeys and the Old

World monkeys/Hominids clades. This will correspond to the root halfway between

the two most divergent taxa in the tree. This rooting technique, called midpoint
rooting is useful to display a tree with a meaningful evolutionary direction when

an outgroup (see Chapter 1 and below for more details) is not available in the data

set under investigation. To obtain the midpoint rooted tree, open the outtree

file with the program FigTree and choose the option Midpoint Root from the

Tree menu. The program creates a midpoint rooted tree that can be displayed in

the window by clicking the Next button on the top left of the FigTree window.

To increase the taxa font size click on the little triangle icon on the Tip Labels

bar (on the left of the window, see Fig. 5.7) and increase the Font Size to

12 by using the up and down buttons on the right of the Font Size display

box. The FigTree application also implements other user-friendly tools for editing

phylogenetic trees. For example, by selecting the Appearance bar on the right
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Fig. 5.7 Editing phylogenetic trees with FigTree. FigTree screenshot (MacosX) of the NJ phylogenetic
tree for the primates data set shown in Fig. 5.6. The FigTree command panels on top and
left allow various manipulation of the tree (see text). The tree was midpoint rooted and
branches colored according to specific lineages: New World monkeys, Old World monkeys,
and Hominids.

of the window we can increase the Line Weight (for example to 2 or 3), which

results in thicker branches. The Scale Bar option allows increasing the Font

Size and the Line Weight of the scale bar at the bottom of the tree. We

can also display branch lengths by checking the box on the left of the Branch

Labels bar. For publication purposes it is sometimes useful to display different

colors for the branches of a tree. For example, we may want to color the Hominids

clade in green, the Old World monkey one in red, and the New World monkey

one in blue. Select the Clade button on the top of the FigTree window. Click

on the internal branch leading to the Hominids clades: that branch and all its

descending branches within the clade will be highlighted. Click on the Color icon

displayed on the top of the FigTree window and select the color red. Repeat the same

procedure for the other two main clades choosing different colors. The edited tree

can be saved in NEWICK format by selectingSave as ... from theFilemenu,
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which contains additional information such as the color of the branch lengths in

a FigTree block. The tree can be re-opened later, but only FigTree is capable

of displaying the editing information in the FigTree block. The tree can also be

exported as PDF file by selecting Export PDF ... from the File menu. An

example of the primates tree midpoint rooted and edited with FigTree is displayed

in Fig. 5.7.

5.7.1 Outgroup rooting

Midpoint rooting only works if we have access to independent information (like in

the case discussed above), and/or when we can safely assume that the evolutionary

rates along different branches of the tree are not dramatically different. When

rates are dramatically different, a long branch may represent faster accumulation

of mutations rather than an older lineage, and placing the root at the midpoint

of the tree may be misleading. Chapter 11 will discuss in detail the molecular

clock (constancy of evolutionary rates) hypothesis and the so-called local clock
and relaxed clock models that can be used to investigate the presence of different

evolutionary rates along different branches of a tree.

An alternative rooting technique consists of including an outgroup in the data

set and placing the root at the midpoint of the branch that connects the outgroup

with the rest (ingroup) of the taxa. As an example, we will use themtDNA.phydata

set including mitochondrial DNA sequences from birds, reptiles, several mammals,

and three sequences from lungfish. After obtaining the NJ tree with F84-corrected

distances as above, open the tree in TreeView. The unrooted phylogram is shown

in Fig. 5.8a. It can be seen that birds and crocodiles share a common ancestor,

they are called sister taxa. A monophyletic clade can also be distinguished for

all the mammalian taxa (platypus, opossum, mouse, rat, human, cow, whale,

seal). From systematic studies based on morphological characters it is known

that lungfish belongs to a clearly distinct phylogenetic lineage with respect to the

amniote vertebrates (such as reptiles, birds, and mammals). Thus, the three lungfish

sequences (LngfishAf, LngfishSA, LngfishAu) can be chosen as outgroups and the

tree can be rooted to indicate the evolutionary direction.

(i) choose Define outgroup ... from the Treemenu and select the three lung-
fish sequences (LngFishAu, LngFishSA, LngFishAf)

(ii) choose Root with outgroup ... from the Tree menu

The rooted phylogram displayed by TreeView is shown in Fig. 5.8b.

Choosing an outgroup in order to estimate the root of a tree can be a tricky

task. The chosen outgroup must belong to a clearly distinct lineage with respect

to the ingroup sequences, i.e. the sequences in the data set under investigation,

but it does not have to be so divergent that it cannot be aligned unambiguously
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Fig. 5.8 Neighbor-joining tree of the mtDNA data set. Genetic distances were calculated with the
F84 model and a transition/transversion ratio of 2. The scale at the bottom represents
genetic distances in nucleotide substitutions per site. (a) Unrooted phylogram. (b) Rooted
phylogram using the Lungfish sequences as outgroup.
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against them. Therefore, before aligning outgroup and ingroup sequences and

performing phylogenetic analyses, it can be useful to evaluate the similarity between

the potential outgroup and some of the ingroup sequences using Dot Plots (see

Section 3.10 in Chapter 3). If the Dot Plot does not show a clear diagonal, it is

better to choose a different outgroup or to align outgroup and ingroup sequences

only in the genome region where a clear diagonal is visible in the Dot Plot.

5.8 Inferring a Fitch–Margoliash tree for the mtDNA data set

The Fitch–Margoliash tree is calculated with the program Fitch.exe by employing

the same distance matrix used for estimating the NJ tree in Section 5.7. The

only option to be changed is option G (select Yes), which slows down a little

the computation but increases the probability of finding a tree minimizing the

difference between estimated pairwise distances and patristic distances (see Section

5.2.3). Again, the tree written to the outtree file can be displayed and edited with

the TreeView or FigTree program. The phylogram rooted with DNA sequences from

lungfish is shown in Fig. 5.9.

5.9 Bootstrap analysis using Phylip

The mtDNA data set discussed in this book was originally obtained to support the

common origin of birds and crocodiles versus an alternative hypothesis proposing

mammals as the lineage most closely related to birds (Hedges, 1994). Both the

NJ and the Fitch–Margoliash tree show that birds and crocodiles cluster together.

However, the two trees differ in clustering of turtles and lizards (compare Figs. 5.8

and 5.9). It is not unusual to obtain slightly different tree topologies using dif-

ferent tree-building algorithms. To evaluate the hypothesis of crocodile and bird

monophyly appropriately, the reliability of the clustering in the phylogenetic trees

estimated above must be assessed. As discussed in Section 5.3, one of the most widely

used methods to evaluate the reliability of specific branches in a tree is bootstrap

analysis. Bootstrap analysis can be carried out using Phylip as following:

(i) Run the program Seqboot.exe using as infile the aligned mtDNA sequences;
the following menu will appear:

Bootstrapping algorithm, version 3.66

Settings for this run:

D Sequence, Morph, Rest., Gene Freqs? Molecular

sequences

J Bootstrap, Jackknife, Permute, Rewrite? Bootstrap

% Regular or altered sampling fraction? regular
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Fig. 5.9 Fitch–Margoliash tree of the mtDNA data set. Genetic distances were calculated with the
F84 model and a transition/transversion ratio of 2. The scale at the bottom represents
genetic distances in nucleotide substitutions per site. The phylogram was rooted using the
Lungfish sequences as outgroup.

B Block size for block-bootstrapping? 1 (regular

bootstrap)

R How many replicates? 100

W Read weights of characters? No

C Read categories of sites? No

S Write out data sets or just weights? Data sets

I Input sequences interleaved? Yes

0 Terminal type (IBM PC, ANSI, none)? IBM PC

1 Print out the data at start of run No

2 Print indications of progress of run Yes

Y to accept these or type the letter for one to change

Option J selects the kind of analysis (bootstrap by default). Option R determines
the number of replicates. Type R and enter 1000. When entering Y, the program
asks for a random number seed. The number should be odd and it is used to feed
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a random number generator, which is required to generate replicates of the data
set with random resampling of the alignment columns (see Section 5.3). Type 5
and the program will generate the replicates and write them to the outfile:

(ii) Rename theoutfile toinfile and runDNAdist.exe. After selecting option
M the following option should appear in the menu:

Multiple data sets or multiple weights? (type D or W)

Type D followed by the enter key, then type 1000 and press the enter key
again. Type Y to accept the options followed by the enter key. DNAdist.exe
will compute 1000 distance matrices from the 1000 replicates in the original
mtDNA alignment and write them to the outfile.

(iii) Rename the outfile to infile. It is now possible to calculate, using the
new infile, 1000 NJ or Fitch–Margoliash trees with Neighbor.exe or
Fitch.exe by selecting option M from their menus. As usual, the trees will
be written in the outtree file. Since the computation of 1000 Fitch–Margoliash
trees can be very slow, especially if the option G is selected, enter 200 in option M so
that only the first 200 replicates in the infile will be analyzed by Fitch.exe
(keep in mind, however, that for publication purposes 1000 replicates is more
appropriate). Enter again a random number and type Y.

(iv) The collection of trees in the outtree from the previous step is the input data to
be used with the program Consense.exe. Rename outtree to intree, run
Consense.exe, and enter Y. Note that there is no indication of the progress
of the calculation given by Consense.exe, which depending on the size of
the data set can take a few seconds to a few minutes. The consensus tree (see
Section 5.3), written in the outtree in the usual NEWICK format (Fig. 5.5), can
be viewed with TreeView. Detailed information about the bootstrap analysis are
also contained in the outfile.

The bootstrap values can be viewed in TreeView by selecting Show internal

edges labels from the Treemenu. Figure 5.10a shows the NJ bootstrap con-

sensus tree (using 1000 bootstrap replicates) as it would be displayed by TreeView.

In 998 out of our 1000 replicates, birds and crocodile cluster together (bootstrap

value 99.8%). A slightly different value (e.g. 99.4%) could have been obtained

when a different set of 1000 bootstrap replicates were analyzed, e.g. by feeding a

different number to the random number generator. This is an excellent support

that strengthens our confidence in the monophyletic origin of these two species.

The difference in clustering between the NJ and Fitch–Margoliash tree (Lizard vs.

Turtle monophyletic with Crocodile–Bird–Sphenodon) is only poorly supported.

A similar weak support would be obtained for the Fitch–Margoliash bootstrap

analysis indicating that, in both cases, there is considerable uncertainty about the

evolutionary relationships of these taxa. Note that the program by default draws

rooted trees using an arbitrarily chosen outgroup and that branch lengths in this

consensus tree, represented in cladogram style, are meaningless. It is important
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to distinguish between the consensus tree and the “real” tree constructed using the

NJ method. The two trees do not necessarily have the same topology (see Box 5.4).

The bootstrap consensus tree is inherently more unresolved since it is a consensus

of different clustering hypothesis. When the trees are different, the topology of the

consensus tree has to be disregarded since it is not based on the real data set but on

bootstrap re-samplings of the original data. For publication the bootstrap values

are usually displayed on a tree inferred from the original alignment, which usually

includes branch lengths proportional to genetic distances. For example, Fig. 5.10b

shows the NJ tree of the mtDNA data set (the same from Fig. 5.8b) where the

bootstrap values from the consensus tree in Fig. 5.10a have been added. In this

case, the topologies are the same because all the clusters in the inferred tree are

also in the bootstrap consensus tree. The tree from TreeView can be exported as

a graphic file by selecting Save as graphic ... from the File menu. This

file can then be imported in most graphics programs and bootstrap values can be

added on the branches like in Fig. 5.10b. The consensus tree can also be viewed

and edited using FigTree.

5.10 Impact of genetic distances on tree topology: an example using Mega4

In the previous chapter we have introduced several nucleotide substitution models

based on the Markov process and we have shown how genetic distance estimates

are affected by the underlying assumptions of each model. Since pairwise genetic

distances are used in turn by distance-based algorithms to infer topology and

branch lengths of phylogenetic trees, it is not surprising that distances estimated

according to different models might produce different trees.

As pointed out at the beginning of this chapter, it can be demonstrated that

the NJ method is able to infer the true phylogenetic history (the true tree) of a

set of taxa when the estimated genetic distances represent, in fact, the true genetic

distances, i.e. the actual number of nucleotide substitutions per site between each

pair of lineages. Such a condition is rarely met by real data sets. As we have seen

in the previous chapter, Markov models, from the simple Jukes and Cantor to the

complex General Time Reversible, are at best a reasonable approximation of the

evolutionary process and more realistic models can be implemented at the cost

of longer computation time and larger variance of the estimates. Even assuming

that the selected substitution model accurately represents the evolutionary process

for a given set of taxa, random fluctuations of the Poisson process will affect our

estimates to some degree. Therefore, it is crucial not only to choose an appropriate

model of nucleotide substitution that is complex enough to describe the underlying

evolutionary process without increasing excessively the variance of the estimates,
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Box 5.4 Bootstrap analysis with Phylip Consense.exe outfile

Part of the output file produced by the program Consense.exe for the 1000 bootstrap
replicates of the mtDNA data set discussed in Section 5.6 is shown below.

Majority-rule and strict consensus tree program, version 3.573c

Species in order:

Opossum

Platypus

Rat

Mouse

Whale

Cow

Seal

Human

Lizard

Bird

Crocodile

Turtle

Sphenodon

Frog

LngfishSA

LngfishAf

LngfishAu

Sets included in the consensus tree

Set (species in order) How many times out of 1000.00

.......... ...**** 1000.00

..**...... ....... 1000.00

........** ******* 1000.00

....**.... ....... 999.00

.......... ....**. 999.00

........** ***.... 999.00

..******.. ....... 998.00

.......... ....*** 997.00

.........* *...... 994.00

....***... ....... 903.00

..******** ******* 879.00

....****.. ....... 757.00

........** *.*.... 669.00

.........* *.*.... 666.00
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Box 5.4 (cont.)

Sets NOT included in consensus tree:

Set (species in order) How many times out of 1000.00

.........* ***.... 245.00

..*****... ....... 170.00

........** *...... 159.00

........*. ..*.... 112.00

.*******.. ....... 88.00

.........* **..... 77.00

....**.*.. ....... 75.00

..**...*.. ....... 66.00

........** **..... 46.00

.*......** ******* 33.00

........*. .*..... 24.00

......**.. ....... 12.00

..**..*... ....... 9.00

.......... *.*.... 5.00

.......... ...*..* 3.00

..****.... ....... 3.00

..****.*.. ....... 3.00

.......... .**.... 2.00

..**..**.. ....... 2.00

........*. *.....& 1.00

....****** ****"** 1.00

.......*** ******* 1.00

.....**... ....... 1.00

.........* ******* 1.00

.......... .....** 1.00

The outfile first lists the taxa included in the tree (Species in order). The
second section of the file, Sets included in the consensus tree, lists the
clades which are present in more than 50% of the bootstrap replicates and are therefore
included in the consensus tree. The clades are indicated as follows: each “.” represents a
taxon in the same order as it appears in the list and taxa belonging to the same clade are
represented by “*”. For example, “..** ... ... ... .... 1000.00” means that the
clade joining rat and mouse (the third and fourth species in the list) is present in all 1000
trees estimated from the bootstrap replicates. It can happen that a particular clade present
in the original tree is not included in the consensus tree because a different topology with
other clades was better supported by the bootstrap test. In this case, the bootstrap value
of that particular clade can be found in the third section, Sets NOT included in

consensus tree.



177 Phylogenetic inference based on distance methods: practice

but also to realize that, except in a few cases, a phylogenetic tree is at best an

educated guess that needs to be carefully evaluated and interpreted.

Chapter 10 will describe a general statistical framework that can be used to select

the best fitting nucleotide substitution model for any given data set. In what follows

we will show, using the primates data set as an example, how different evolutionary

assumptions can affect the tree estimated with a tree-based algorithm like NJ, and

can occasionally lead to dramatically “wrong” tree topologies. We will perform tree

inference using the Mega4 program and the file primates.meg. The file contains

aligned DNA sequences in mega format (see Chapter 4) and can be downloaded

from www.thephylogenetichandbook.org.

Using Mega4 it is possible to estimate a NJ tree and perform the bootstrap

test in an automated fashion. The program will display the tree in a new win-

dow and superimpose bootstrap support values along each branch of the tree.

To estimate a NJ tree using Kimura-2P (K2P) corrected distances and perform

bootstrap analysis on 1000 replicates, open the primates.meg file in Mega4
and select the submenu Bootstrap Test of Phylogeny > Neighbor-

Joining ...from the Phylogeny menu in the Mega4 main window. The

Analysis Preferences window will appear. Click on the green square to

the right of the Gaps/missing data row and select pairwise deletion

(specifying that for each pair of sequences only gaps in the two sequences being

compared should be ignored). Similarly, select in theModel rowNucleotide >

Kimura-2-parameter. To set the number of bootstrap replicates, click on the

Test of Phylogeny tab on the top of the window and enter 1000 in the

Replications cell. Select again the Option Summary tab and click on the

compute button at the bottom of the window. After a few seconds (or a few

minutes, depending on the speed of your computer processor) the NJ tree with

bootstrap values will appear in the Tree Explorerwindow. By default, the tree

is midpoint rooted and should look like the one given in Fig. 5.11a. If the location

of the root needs to be placed on any other branch of the tree, this can be done by

selecting the top button on the left side of the window (the button is indicated by

an icon representing a phylogenetic tree with a green triangle on its left), placing

the mouse on the branch chosen as the new root and clicking on it: a re-rooted

tree will be displayed in the same window. To go back to the midpoint-rooted tree,

simply select Root on Midpoint from the View menu.

In a similar way, NJ trees can be obtained using different nucleotide substitu-

tion models, with and without �-distributed rates across sites and with a different

shape parameter α (see previous chapter) by selecting the appropriate options in

the Analysis Preferences window. Figure 5.11a, b, c, d show the NJ trees

(with 1000 bootstrap replicates each) obtained with the K2P model without �-

distribution (5.11a), and with �-distribution using different α values: α = 0.5
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(c) K2P + (  = 0.25) (d) K2P + (  = 0.10)

Fig. 5.11 Neighbor-joining trees of the Primates data set inferred by using different nucleotide sub-
stitution models. The scale at the bottom measures genetic distances in nucleotide substi-
tutions per site. All phylograms were midpoint rooted and bootstrap values are now shown
to the left of the node representing the most recent common ancestor of the clade they
support. (a) NJ tree with Kimura 2-parameter estimated distances. (b) NJ tree with Kimura
2-parameter estimated distances using �-distributed rates along sites with α-parameter of
0.5. (c) NJ tree with Kimura 2-parameter estimated distances using �-distributed rates along
sites with α-parameter of 0.25. (d) NJ tree with Kimura 2-parameter estimated distances
using �-distributed rates along sites with α-parameter = 0.1. (e) NJ tree with Tamura–Nei
estimated distances. (f) NJ tree with Tamura–Nei estimated distances using �-distributed
rates along sites with α-parameter of 0.5. (g) NJ tree with Tamura–Nei estimated distances
using �-distributed rates along sites with α-parameter of 0.25. (h) NJ tree with Tamura–Nei
estimated distances using �-distributed rates along sites with α-parameter of 0.1.
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Fig. 5.11 (cont.)

(Fig. 5.11b), α = 0.25 (Fig. 5.11c), and α = 0.1 (Fig. 5.11d). Figure 5.11e, f, g,

h show trees obtained with the Tamura–Nei model (TN, see previous chapter)

without (Fig. 5.11e), and with (Fig. 5.11f, g, h) different �-distributions. The K2P

and the TN tree without �-distribution and with �-distribution but moderate rate

heterogeneity (α = 0.5) appear very similar except for the position of colobus and

langur taxa that are monophyletic in the trees in Fig. 5.11a and 5.11e but para-
phyletic (with the colobus sequence branching off in trees in Fig. 5.11b and Fig.
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5.11f). The K2P and TN trees obtained using α = 0.25 (strong rate heterogeneity)

also show a discordant position for the white-faced saki sequence (Fig. 5.11c and

Fig. 5.11g). The K2P and the TN trees with α = 0.1 show again a similar (but not

identical!) topology. However, such trees are in obvious contradiction to all the

known data about Hominids evolutionary relationships. In fact, according to

the K2P tree (Fig. 5.11d) the chimp lineage is the oldest lineage at the base of

the Hominids clade, while according to the TN tree (Fig. 5.11h), it is the human

lineage that branches off at the root of the Hominids clade. In general, a different α

parameter of the �-distribution tends to have a greater impact on the tree topology

than a different evolutionary model. However, the example shows (hopefully, in a

convincing way) that the nucleotide substitution model and the parameters of the

model (especially α) can significantly impact the phylogenetic reconstruction and,

therefore, need to be chosen carefully. The following chapter and Chapter 10 will

discuss how maximum likelihood methods can be used to estimate substitution

model parameters and to test different evolutionary hypotheses within a rigorous

statistical framework.

5.11 Other programs

Several other programs are freely available to compute phylogenetic trees with

distance-based methods. Some of them, like Paup*, will be discussed in the

next chapters. A comprehensive list of tree visualization and editing software

is provided at http://bioinfo.unice.fr/biodiv/Tree editors.html. A rather complete

list of the phylogeny software available is maintained by Joe Felsenstein at

http://evolution.genetics.washington.edu/PHYLIP/software.html and most packages

can be downloaded following the links of his web page. They always contain com-

plete documentation on how to install and run them properly. However, the pro-

grammer usually assumes the user has a background in phylogeny and molecular

evolution, and for those programs not discussed in this book it may be necessary

to read the original papers in order to understand the details or the meaning of the

implemented computation.


