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Phylogeny inference based on parsimony
and other methods using Paup*

THEORY

David L. Swofford and Jack Sullivan

8.1 Introduction

Methods for inferring evolutionary trees can be divided into two broad categories:

those that operate on a matrix of discrete characters that assigns one or more

attributes or character states to each taxon (i.e. sequence or gene-family member);

and those that operate on a matrix of pairwise distances between taxa, with each

distance representing an estimate of the amount of divergence between two taxa

since they last shared a common ancestor (see Chapter 1). The most commonly

employed discrete-character methods used in molecular phylogenetics are parsi-
mony and maximum likelihood methods. For molecular data, the character-state

matrix is typically an aligned set of DNA or protein sequences, in which the states

are the nucleotides A, C, G, and T (i.e. DNA sequences) or symbols representing the

20 common amino acids (i.e. protein sequences); however, other forms of discrete

data such as restriction-site presence/absence and gene-order information also may

be used.

Parsimony, maximum likelihood, and some distance methods are examples of

a broader class of phylogenetic methods that rely on the use of optimality criteria.

Methods in this class all operate by explicitly defining an objective function that

returns a score for any input tree topology. This tree score thus allows any two or

more trees to be ranked according to the chosen optimality criterion. Ordinarily,

phylogenetic inference under criterion-based methods couples the selection of
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a suitable optimality criterion with a search for an optimal tree topology under

that criterion. Because the number of tree topologies grows exponentially with the

number of taxa (see Table 1.4), criterion-based methods are necessarily slower than

algorithmic approaches, such as UPGMA or neighbor-joining (NJ), which simply

cluster taxa according to a prescribed set of rules and operations (see Chapter 5).

However, we believe that criterion-based methods have a strong advantage in that

the basis for preferring one tree over another is made mathematically precise, unlike

the case for algorithmic methods. For example, NJ was originally described (Saitou

& Nei, 1987) as a method for approximating a tree that minimizes the sum of

least-squares branch lengths – the minimum-evolution criterion (see Chapter 5).

However, it rarely achieves this goal for data sets of non-trivial size, and rear-

rangements of the NJ tree that yield a lower minimum-evolution score can usually

be found. This result makes it difficult to defend the presentation of an NJ tree

as the most reasonable estimate of a phylogeny. With criterion-based methods, it

can at least be said that a given tree topology was the best that could be found

according to the criterion. If others want to dispute that tree, they are free to

criticize the criterion or search for better trees according to the criterion, but it is

clear why the tree was chosen. It is true that bootstrapping or jackknifing meth-
ods (see Chapter 5) can be used to quantify uncertainty regarding the groupings

implied by an NJ tree, but fast approximations are also available for criterion-based

methods.

Although it contains additional capabilities, the Paup* program (Swofford, 2002)

is primarily a program for estimating phylogenies using criterion-based methods.

It includes support for parsimony, maximum likelihood (nucleotide data), and

distance methods. This chapter discusses the use of Paup* as a tool for phylogenetic

inference. First, some theoretical background is provided for parsimony analysis,

which – unlike distance and maximum likelihood methods (see Chapters 5 and 6) –

is not treated elsewhere in this book. Next, strategies are described for searching for

optimal trees that are appropriate for any of the existing optimality criteria. Finally,

in the Practice section, many of the capabilities of Paup* are illustrated using the

real-data examples common to other chapters in this book.

8.2 Parsimony analysis – background

Although the first widely used methods for inferring phylogenies were pairwise

distance methods, parsimony analysis has been the predominant approach used to

construct phylogenetic trees from the early 1970s until relatively recently; despite

some limitations, it remains an important and useful technique. The basic idea

underlying parsimony analysis is simple: one seeks the tree, or collection of trees,

that minimizes the amount of evolutionary change (i.e. transformations of one
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character state into another) required to explain the data (Kluge & Farris, 1969;

Farris, 1970; Fitch, 1971).

The goal of minimizing evolutionary change is often defended on philosophical

grounds. One line of argument is the notion that, when two hypotheses provide

equally valid explanations for a phenomenon, the simpler one should always be

preferred. This position is often referred to as “Ockham’s Razor”: shave away all

that is unnecessary. To use simplicity as a justification for parsimony methods in

phylogenetics, one must demonstrate a direct relationship between the number

of character-state changes required by a tree topology and the complexity of the

corresponding hypotheses. The connection is usually made by asserting that each

instance of homoplasy (i.e. sharing of identical character states that cannot be

explained by inheritance from the common ancestor of a group of taxa) constitutes

an ad hoc hypothesis, and that the number of such ad hoc hypotheses should be

minimized. Related arguments have focused on the concepts of falsifiability and

corroboration most strongly associated with the writings of Karl Popper, suggest-

ing that parsimony is the only method consistent with a hypothetico-deductive

framework for hypothesis testing. However, as argued recently by de Queiroz and

Poe (2001), careful interpretation of Popper’s work does not lead unambiguously to

parsimony as the method of choice. Furthermore, the linkage between parsimony

and simplicity is tenuous, as highlighted by the recent work of Tuffley and Steel

(1997). It demonstrates that parsimony and likelihood become equivalent under

an extremely parameter-rich likelihood model that assigns a separate parameter for

each character (site) on every branch of the tree, which is hardly a “simple” model.

So, despite more than 20 years of ongoing debate between those who advocate the

exclusive use of parsimony methods and those who favor maximum likelihood

and related model-based statistical approaches, the issue remains unsettled and the

camps highly polarized. Although we place ourselves firmly on the statistical side,

we believe that parsimony methods will remain part of a complete phylogenetic-

analysis toolkit for some time because they are fast and have been demonstrated

to be quite effective in many situations (e.g. Hillis, 1996). In this sense, parsimony

represents a useful “fallback” method when model-based methods cannot be used

due to computational limitations.

Although parsimony methods are most effective when rates of evolution are

slow (i.e. the expected amount of change is low), it is often asserted incorrectly that

this is an “assumption” of parsimony methods. In fact, parsimony can perform

extremely well under high rates of change as long as the lengths of the branches on

the true underlying tree do not exhibit certain kinds of pathological inequalities

(Hillis et al., 1994) (see also long-branch attraction, Section 5.3). Nonetheless,

it is difficult to state what the assumptions of parsimony analysis actually are.

Conditions can be specified in which parsimony does very well in recovering
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the true evolutionary tree; however, alternative conditions can be found where it

fails horribly. For example, in the so-called Felsenstein zone, standard parsimony

methods converge to the wrong tree with increasing certainty as more data are

accumulated. This is because a greater proportion of identical character states will

be shared by chance between unrelated taxa than are shared by related taxa due

to common ancestry (Felsenstein, 1978; Swofford et al., 1996). Because parsimony

requires no explicit assumptions other than the standard one of independence

among characters (and some might even argue with that), all one can say is that it

assumes that the conditions that would cause it to fail do not apply to the current

analysis. Fortunately, these conditions are now relatively well understood. The

combined use of model-based methods – less susceptible to long-branch attraction

(see Section 5.3) and related artifacts but limited by computational burden –

with faster parsimony methods that permit greater exploration of alternative tree

topologies provides a mechanism for making inferences maintaining some degree

of protection against the circumstances that could cause parsimony estimates alone

to be misleading.

8.3 Parsimony analysis – methodology

The problem of finding optimal trees under the parsimony criterion can be sep-

arated into two subproblems: (1) determining the amount of character change,

or tree length, required by any given tree; and (2) searching over all possible tree

topologies for the trees that minimize this length. The first problem is easy and

fast, whereas the second is slow due to the extremely large number of possible tree

topologies for anything more than a small number of taxa.

8.3.1 Calculating the length of a given tree under the parsimony criterion

For n taxa, an unrooted binary tree (i.e. a fully bifurcating tree) contains n terminal

nodes representing those sequences, n – 2 internal nodes, and 2n – 3 branches

(edges) that join pairs of nodes. Let τ represent some particular tree topology,

which could be, for example, an arbitrarily chosen tree from the space of all

possible trees. The length of this tree is given by

L (τ ) =
N∑

j=1

l j (8.1)

where N is the number of sites (characters) in the alignment and lj is the length for

a single site j. This length lj is the amount of character change implied by a most

parsimonious reconstruction that assigns a character state xij to each node i for
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each site j. For terminal nodes, the character state assignment is fixed by the input

data. Thus, for binary trees:

l j =
2N−3∑
k=1

ca(k),b(k) (8.2)

where a(k) and b(k) are the states assigned to the nodes at either end of branch k,

and cxy is the cost associated with the change from state x to state y. In the simplest

form of parsimony (Fitch, 1971), this cost is simply 1 if x and y are different or 0 if

they are identical. However, other cost schemes may be chosen. For example, one

common scheme for nucleotide data is to assign a greater cost to transversions than

to transitions (see Chapter 1), reflecting the observation that the latter occur more

frequently in many genes and, therefore, are accorded less weight. The cost scheme

can be represented as a cost matrix, or step matrix, that assigns a cost for the change

between each pair of character states. In general, the cost matrix is symmetric (e.g.

cAG = cGA), with the consequence that the length of the tree is the same regardless

of the position of the root. If the cost matrix contains one or more elements for

which cxy �= cyx, then different rootings of the tree may imply different lengths, and

the search among trees must be done over rooted trees rather than unrooted trees.

Direct algorithms for the determination of the lj are available and are described

briefly in this section. First, however, it will be instructive to examine the calculation

of tree length using the brute-force approach of evaluating all possible character-

state reconstructions. In general, with an alphabet size of r (e.g. r = 4 states

for nucleotides, r = 20 states for amino acids) and T taxa, the number of these

reconstructions for each site is equal to rT – 2. Consider the following example:

j

W . . . ACAGGAT . . .

X . . . ACACGCT . . .

Y . . . GTAAGGT . . .

Z . . . GCACGAC . . .

Suppose that the tree ((W, Y),(X, Z)) is being evaluated (see Fig. 5.5 about the

NEWICK representation of phylogenetic trees), that the lengths for the first j − 1

sites have been calculated, and that the length of site j is to be determined next.

Because there are four sequences, the number of reconstructions to be evaluated

is 4(4 – 2) = 16. The lengths implied by each of these reconstructions under two

different cost schemes are shown in Fig. 8.1. With equal costs, the minimum

length is two steps, and this length is achievable in three ways (i.e. internal nodes

assignment “A–C,” “C–C,” and “G–C”). If a similar analysis for the other two trees

is conducted, both of the trees ((W, X),(Y, Z)) and ((W, Z),(Y, X)) are also found

to have lengths of two steps. Thus, this character does not discriminate among
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Fig. 8.1 Determination of the length of a tree by brute-force consideration of all possible state
assignments to the internal nodes. Calculations are for one site of one of the possible trees
for the four taxa W, X, Y, and Z (character states: A, C, G, T). (a) Cost matrix that assigns
equal cost to all changes from one nucleotide to another. (b) Cost matrix that assigns four
times as much weight to transversions as to transitions (rows and columns are ordered A,
C, G, T). (c) All 16 possible combinations of state assignments to the two internal nodes
and the lengths under each cost scheme. Minimum lengths are two steps for equal costs
and five steps for 4 : 1 tv : ti weighting.
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the three tree topologies and is said to be parsimony-uninformative under this cost

scheme. With 4 : 1 transversion : transition weighting, the minimum length is five

steps, achieved by two reconstructions (i.e. internal node assignments “A–C” and

“G–C”). However, similar evaluation of the other two trees (not shown) finds a

minimum of eight steps on both trees (i.e. two transversions are required rather

than one transition plus one transversion). Under these unequal costs, the character

becomes informative in the sense that some trees have lower lengths than others,

which demonstrates that the use of unequal costs may provide more information

for phylogeny reconstruction than equal-cost schemes.

The method used in this example, in principle, could be applied to every site in

the data set, summing these lengths to obtain the total tree length for each possible

tree, and then choosing the tree that minimizes the total length. Obviously, for real

applications, a better way is needed for determining the minimum lengths that

does not require evaluation of all rn–2 reconstructions. A straightforward dynamic
programming algorithm (Sankoff & Rousseau, 1975) provides such a method for

general cost schemes; the methods of Farris (1970), Fitch (1971), and others handle

special cases of this general system with simpler calculations. Sankoff’s algorithm

is illustrated using the example in Box 8.1; the original papers may be consulted

for a full description of the algorithm. Dynamic programming operates by solving

a set of subproblems and by assembling those solutions in a way that guarantees

optimality for the full problem. In this instance, the best length that can be achieved

for each subtree – given each of the possible state assignments to each node – is

determined, moving from the tips toward the root of the tree. Upon arriving at

the root, an optimal solution for the full tree is guaranteed. A nice feature of

this algorithm is that, at each stage, only one pair of vectors of conditional subtree

lengths above each node needs to be referenced; knowing how those subtree lengths

were obtained is unnecessary.

For simple cost schemes, the full dynamic programming algorithm described in

Box 8.1 is not necessary. Farris (1970) and Fitch (1971) described algorithms for

characters with ordered and unordered states, respectively, which can be proven to

yield optimal solutions (Hartigan, 1973; Swofford & Maddison, 1987); these two

algorithms are equivalent for binary (i.e. two-state) characters. Fitch’s algorithm,

illustrated in Box 8.2, is relevant for sequence data when the cost of a change from

any state to any other state is assumed to be equal.

8.4 Searching for optimal trees

Having specified a means for calculating the score of a tree under our chosen

criterion, the more difficult task of searching for an optimal tree can be con-

fronted. The methods described in the following sections can be used for parsimony,
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Box 8.1 Calculation of the minimum tree length under general cost schemes using Sankoff’s
algorithm

For symmetric cost matrixes, we can root an unrooted tree arbitrarily to determine the minimum tree
length. Then, for each node i (labeled in boldface italics), we compute a conditional-length vector
Sij containing the minimum possible length above i, given each of the possible state assignments to
this node for character j (for simplicity, we drop the second subscript because only one character is
considered in turn). Thus, sik is the minimum possible length of the subtree descending from node
i if it is assigned state k. For the tip sequences, this length is initialized to 0 for the state(s) actually
observed in the data or to infinity otherwise. The algorithm proceeds by working from the tips toward
the root, filling in the vector at each node based on the values assigned to the node’s children (i.e.
immediate descendants).

G A C C
A C G T A C G T A C G T A C G T

• • •0 • •• • •• • ••000

W XY Z

1 2

3
We now visit node 1. For each element k of this vector, we consider the costs associated with each of

the four possible assignments to each of the child nodes W and Y, and the cost needed to reach these
states from state k, which is obtained from the cost matrix (C in this example, we use the cost matrix
from Fig. 8.1B, which represents a 4 : 1 tv : ti weighting). This calculation is trivial for nodes ancestral
to two terminal nodes because only one state needs to be considered for each child. Thus, if we assign
state A to node 1, the minimum length of the subtree above node 1 given this assignment is the cost
of a change from A to G in the left branch, plus the cost of a (non-) change from A to A in the right
branch: s1A = cAG + cAA = 1 + 0 = 1. Similarly, s1C is the sum of cCG (left branch) and cCA (right
branch), or 8. Continuing in this manner, we obtain

A C G T A C G T

• • •0 • ••0

min(•, •, 1, •)
+

min(0, •, •, •)
= 1 + 0 = 1

min(•, •, 4, •)
+

min(4, •, •, •)
= 4 + 4 = 8

min(•, •, 0, •)
+

min(1, •, •, •)
= 0 + 1 = 1

min(•, •, 4, •)
+

min(4, •, •, •)
= 4 + 4 = 8

A C G T

W Y

1
for the subtree of node 1.
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The calculation for node 2 proceeds analogously:

A C G T A C G T

• •• • ••00

min(•, 4, •, •)
+

min(•, 4, •, •)
= 4 + 4 = 8

min(•, 0, •, •)
+

min(•, 0, •, •)
= 0 + 0 = 0

min(•, 4, •, •)
+

min(•, 4, •, •)
= 4 + 4 = 8

min(•, 1, •, •)
+

min(•, 1, •, •)
= 1 + 1 = 2

A C G T

2

X Z

The calculation for the root node (node 3) is somewhat more complicated: for each state k at this
node, we must explicitly consider each of the four state assignments to each of the child nodes 1 and 2.
For example, when calculating the length conditional on the assignment of state A to node 3, for the
left branch we consider in turn all four of the assignments to node 1. If node 1 is assigned state A as
well, the length would be the sum of 1 (for the length above node 1) plus 0 (for the non-change from
state A to state A). If we instead choose state C for node 1, the length contributed by the left branch
would be 8 (for the length above node 1) plus 4 (for the change from A to C). The same procedure is
used to determine the conditional lengths for the right branch. By summing these two values for each
state k, we obtain the entire conditional-length vector for node 3:

min(1,12,2,12)
+

min(8,4,9,6)
= 1 + 4 = 5

min(5,8,5,9)
+

min(12,0,12,3)
= 5 + 0 = 5

min(2,12,1,12)
+

min(9,4,8,6)
= 1 + 4 = 5

min(5,9,5,8)
+

min(12,1,12,2)
= 5 + 1 = 6

A C G T

A C G T

1 8 81

A C G T

8 0 28
1 2

3
Since we are now at the root of the tree, the conditional-length vector s3 provides the minimum

possible lengths for the full tree given each of the four possible state assignments to the root, and the
minimum of these values is the tree length we seek. Observe that this length, 5, is the same value we
obtained using the brute-force enumeration shown in Fig. 8.1. As an exercise, the reader may wish to
verify that other rootings yield the same length.

This algorithm provides a means of calculating the length required by any character on any tree
under any cost scheme. We can obtain the length of a given tree by repeating the procedure outlined
here for each character and summing over characters. In principle, we can then find the most parsi-
monious tree by generating and evaluating all possible trees, although this exhaustive-search strategy
would only be feasible for a relatively small number of sequences (i.e. 11 in the current version of
Paup*).
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Box 8.2 Calculation of the minimum tree length using Fitch’s algorithm for equal
costs

As for the general case, we can root an unrooted tree arbitrarily to determine the minimum
tree length. We will assign a state set Xi to each node i; this set represents the set of states
that can be assigned to each node so that the minimum possible length of the subtree
above that node can be achieved. Also, for each node, we will store an accumulated
length si, which represents the minimum possible (unconditional) length in the subtree
descending from node i.

The state sets for the terminal nodes are initialized to the states observed in the data,
and the accumulated lengths are initialized to zero. For the example of Fig. 8.1, this
yields:

1 2

W Y
{G}:0 {A}:0 {C}:0 {C}:0

X Z

3
For binary trees, the state-set calculation for each internal node i follows two simple

rules, based on the state sets and accumulated lengths of the two descendant child nodes,
denoted L(i) and R(i):

(1) Form the intersection of the two child state sets: XL(i) ∩ XR(i). If this intersection is
non-empty, let Xi equal this intersection. Set the accumulated length for this node to
be the sum of the accumulated lengths for the two child nodes: si = sL(i) + sR(i).

(2) If the intersection was empty (i.e. XL(i) and XR(i) are disjoint), let Xi equal the union
of the two child state sets: XL(i) ∪ XR(i). Set the accumulated length for this node to
be the sum of the accumulated lengths for the two child nodes plus one : si = sL(i) +
sR(i) + 1.

Proceeding to node 1 in our example, we find that the intersection of {G} and {A} is
the empty set (φ); therefore, by Rule 2, we let X1 = {A} ∪ G = {A, G} and s1 = 0 + 0 +
1 = 1:

2

{G}:0

{A,G}:1

{A}:0 {C}:0 {C}:0

3
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For node 2, the intersection of {C} and {C} is (obviously) {C}; therefore, by Rule 1,
we obtain:

{G}:0

{A,G}:1 {C}:0

{A}:0 {C}:0 {C}:0

3
Finally, for node 3, the intersection of {A, G} and {C} = φ, so the state set at the

root is equal to the union of these sets, and the corresponding accumulated length equals
1 + 0 + 1 = 2:

{G}:0

{A,G}:1 {C}:0

{A,C,G}:2

{A}:0 {C}:0 {C}:0

Thus, the length required by the tree is equal to two steps, as we obtained previously
using the brute-force approach. As an exercise, the reader may wish to verify that other
rootings of the tree yield the same length.

least-squares distance criteria, and maximum likelihood. Regrettably, this search is

complicated by the huge number of possible trees for anything more than a small

number of taxa.

8.4.1 Exact methods

For 11 or fewer taxa, a brute-force exhaustive search is feasible; an algorithm is

needed that can guarantee generation of all possible trees for evaluation using

the previously described methods. The procedure outlined in Box 8.3 is used in

Paup*. This algorithm recursively adds the tth taxon in a stepwise fashion to all

possible trees containing the first t – 1 taxa until all n taxa have been joined. The

algorithm is easily modified for rooted trees by including one additional artificial

taxon that locates the root of each tree. In this case, the first three trees generated

represent each of the three possible rootings of an unrooted three-taxon tree, and

the algorithm proceeds as in the unrooted case. Thus, the number of rooted trees

for n taxa is equal to the number of unrooted trees for n + 1 taxa.
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Box 8.3 Generation of all possible trees

The approach for generation of all possible unrooted trees is straightforward. Suppose
that we have a data set containing six sequences (i.e. taxa). We begin with the only tree
for the first three taxa in the data set, and connect the fourth taxon to each of the three
branches on this tree.

D
C

D

A

D

B

B

CD

B

B

CD

A

C

DB

A

This generates all three of the possible unrooted trees for the first four taxa. Now, we
connect the fifth taxon, E, to each branch on each of these three trees. For example, we
can join taxon E to the tree on the right above:

E
C

E

A

A

A

A

A

A

C

C

C

C

C

E

EE

E

E

E

D

D

D

D

D

D

B

B

B

B

B B

By connecting taxon E to the other two trees in a similar manner, we generate all 15
of the possible trees for the first five taxa. Finally, we connect the sixth taxon, F, to all
locations on each of these 15 trees (7 branches per tree), yielding a total of 105 trees.
Thus, the full-search tree can be represented as follows (only the paths toward the full
6-taxon trees are shown):
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BB

D

C
A

B

D

C

D

A

E

DB

E
A

C

C
A

E D

B

B
D

A

C
E

C

D

E
B

D
A

B

CE

C
B

EA

C

B

D

A

B

D

D

C

A

C

A
E

A

B

E

C
A

D
C

A

E
B D

C

B

E
A

E
D

C

B
A

E
D

C

B
A

D
C

E

B
A

C
B

E

D
A

D
C

B
A

The lengths (or likelihoods or distance scores) of each of these 105 trees can now be
evaluated, and the set of optimal trees identified.

It is clear from the description of the algorithm for generating all possible trees

in Box 8.3 that the number of possible trees grows by a factor that increases by two

with each additional taxon, as expressed in the following relationship:

B(t) =
t∏

i=3

(2i − 5) (8.3)

where B(t) is the number of unrooted trees for t taxa. For example, the number of

unrooted trees for 7 taxa is 1 × 3 × 5 × 7 × 9 = 945 and the number of unrooted

trees for 20 taxa is over 2 × 1020. Clearly, the exhaustive-search method can be

used for only a relatively small number of taxa. An alternative exact procedure,



280 David L. Swofford and Jack Sullivan

the branch-and-bound method (Hendy & Penny, 1982), is useful for data sets

containing from 12 to 25 or so taxa, depending on the “messiness” of the data.

This method operates by implicitly evaluating all possible trees, but cutting off

paths of the search tree when it is determined that they cannot possibly lead to

optimal trees. The branch-and-bound method is illustrated for a hypothetical six-

taxon data set in Fig. 8.2. We present the example as if parsimony is the optimality

criterion, but this choice is not important to the method. The algorithm effectively

traces the same route through the search tree as would be used in an exhaustive

search (see Box 8.3), but the length of each tree encountered at a node of the

search tree is evaluated even if it does not contain the full set of taxa. Throughout

this traversal, an upper bound on the length of the optimal tree(s) is maintained;

initially, this upper bound can simply be set to infinity. The traversal starts by

moving down the left branch of the search tree successively connecting taxa D

and E to the initial tree, with lengths of 221 and 234 steps, respectively. Then,

connecting taxon F provides the first set of full-tree lengths. After this connection,

it is known that a tree of 241 steps exists, although it is not yet known whether

this tree is optimal. This number therefore, is taken as a new upper bound on the

length of the optimal tree (i.e. the optimal tree length cannot be longer than 241

steps because a tree at this length has already been identified). Now, the algorithm

backtracks on the search tree and takes the second path out of the 221-step, 4-

taxon tree. The 5-taxon tree containing taxon E obtained by following this path

requires 268 steps. Thus, there is no point in evaluating the seven trees produced

by connecting taxon F to this tree because they cannot possibly require fewer than

268 steps, and a tree of 241 steps has already been found. By cutting off paths in this

way, large portions of the search tree may be avoided and a considerable amount

of computation time saved. The algorithm proceeds to traverse the remainder of

the search tree, cutting off paths where possible and storing optimal trees when

they are found. In this example, a new optimal tree is found at a length of 229

steps, allowing the upper bound on the tree length to be further reduced. Then,

when the 233-step tree containing the first five taxa is encountered, the seven trees

that would be derived from it can be immediately rejected because they would also

require at least 233 steps. The algorithm terminates when the root of the search

tree has been visited for the last time, at which time all optimal trees will have been

identified.

Several refinements to the branch-and-bound method improve its performance

considerably. Briefly, these include (1) using a heuristic method such as stepwise
addition (discussed later in this section) or NJ (see Chapter 5) to find a tree whose

length provides a smaller initial upper bound, which allows earlier termination of

search paths in the early stages of the algorithm; (2) ordering the sequential addition

of taxa in a way that promotes earlier cutoff of paths (rather than just adding them
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Fig. 8.2 The branch-and-bound algorithm for the exact solution of the problem of finding an optimal
parsimony tree. The search tree is the same as shown in Box 8.3, with tree lengths for a
hypothetical data set shown in boldface type. If a tree lying at a node of this search tree
(thus joining fewer taxa) has a length that exceeds the current lower bound on the optimal
tree length, this path of the search tree is terminated (indicated by a cross-bar), and the
algorithm backtracks and takes the next available path. When a tip of the search tree is
reached (i.e. when we arrive at a tree containing the full set of taxa), the tree is either
optimal (and therefore retained) or suboptimal (and rejected). When all paths leading from
the initial three-taxon tree have been explored, the algorithm terminates, and all most
parsimonious trees will have been identified. Asterisks indicate points at which the current
lower bound is reduced. See text for additional explanation; circled numbers represent the
order in which phylogenetic trees are visited in the search tree.
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in order of their appearance in the data matrix); and (3) using techniques such as

pairwise character incompatibility to improve the lower bound on the minimum

length of trees that can be obtained by continuing outward traversal of the search

tree (allowing earlier cutoffs). All of these refinements are implemented in Paup*
(see the program documentation for further information).

The branch-and-bound strategy may be used for any optimality criterion whose

objective function is guaranteed to be non-decreasing as additional taxa are con-

nected to the tree. Obviously, this is true for parsimony; increasing the vari-

ability of the data by adding additional taxa cannot possibly lead to a decrease

in tree length. It is also true for maximum likelihood and some distance crite-

ria, including least-squares methods that score trees by minimizing the discrep-

ancy between observed and path-length distances (see Chapter 5). However, it

does not work for the minimum-evolution distance criterion. In minimum evo-

lution, one objective function is optimized for the computation of branch lengths

(i.e. least-squares fit), but a different one is used to score the trees (i.e. sum of

branch lengths). Unfortunately, the use of these two objective functions makes

it possible for the minimum-evolution score to decrease when a new taxon is

joined to the tree, invalidating the use of the branch-and-bound method in this

case.

8.4.2 Approximate methods

When data sets become too large for the exact searching methods described in

the previous section to be used, it becomes necessary to resort to the use of

heuristics: approximate methods that attempt to find optimal solutions but provide

no guarantee of success. In Paup* and several other programs, a two-phase system

is used to conduct approximate searches. In the simplest case, an initial starting tree

is generated using a “greedy” algorithm that builds a tree sequentially according

to some set of rules. In general, this tree will not be optimal, because decisions

are made in the early stages without regard for their long-term implications. After

this starting tree is obtained, it is submitted to a round of perturbations in which

neighboring trees in the perturbation scheme are evaluated. If some perturbation

yields a better tree according to the optimality criterion, it becomes the new “best”

tree and it is, in turn, submitted to a new round of perturbations. This process

continues until no better tree can be found in a full round of the perturbation

process.

One of the earliest and still most widely used greedy algorithms for obtaining

a starting tree is stepwise addition (e.g. Farris, 1970), which follows the same kind

of search tree as the branch-and-bound method described previously. However,

unlike the exact exhaustive enumeration of branch-and-bound methods, stepwise

addition commits to a path out of each node on the search tree that looks most
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promising at the moment, which is not necessarily the path leading to a global

optimum. In the example in Fig. 8.2, Tree 22 is shorter than Trees 2 or 21; thus, only

trees derivable from Tree 22 remain as candidates. Following this path ultimately

leads to selection of a tree of 233 steps (Fig. 8.3), which is only a local rather than a

global optimum. The path leading to the optimal 229-step tree was rejected because

it appeared less promising at the 4-taxon stage. This tendency to become “stuck” in

local optima is a common property of greedy heuristics, and they are often called

local-search methods for that reason.

Because stepwise addition rarely identifies a globally optimal tree topology for

real data and any non-trivial number of taxa, other methods must be used to

improve the solution. One such class of methods involves tree-rearrangement

perturbations known as branch-swapping. These methods all involve cutting off

one or more pieces of a tree (subtrees) and reassembling them in a way that is

locally different from the original tree. Three kinds of branch-swapping moves are

used in Paup*, as well as in other programs. The simplest type of rearrangement

is a nearest-neighbor interchange (NNI), illustrated in Fig. 8.4. For any binary

tree containing T terminal taxa, there are T – 3 internal branches. Each branch is

visited, and the two topologically distinct rearrangements that can be obtained by

swapping a subtree connected to one end of the branch with a subtree connected to

the other end of the branch are evaluated. This procedure generates a relatively small

number of perturbations whose lengths or scores can be compared to the original

tree. A more extensive rearrangement scheme is subtree pruning and regrafting
(SPR), illustrated in Fig. 8.5, which involves clipping off all possible subtrees

from the main tree and reinserting them at all possible locations, but avoiding

pruning and grafting operations that would generate the same tree redundantly.

The most extensive rearrangement strategy available in Paup* is tree bisection and
reconnection (TBR), illustrated in Fig. 8.6. TBR rearrangements involve cutting

a tree into two subtrees by cutting one branch, and then reconnecting the two

subtrees by creating a new branch that joins a branch on one subtree to a branch

on the other. All possible pairs of branches are tried, again avoiding redundancies.

Note that the set of possible NNIs for a tree is a subset of the possible SPR

rearrangements, and that the set of possible SPR rearrangements is, in turn, a subset

of the possible TBR rearrangements. For TBR rearrangements, a “reconnection

distance” can be defined by numbering the branches from zero starting at the cut

branch (Fig. 8.6c and 8.6e). The reconnection distance is then equal to the sum

of numbers of the two branches that are reconnected. The reconnection distances

then have the following properties: (1) NNIs are the subset of TBRs that have a

reconnection distance of 1; (2) SPRs are the subset of TBRs so that exactly one of the

two reconnected branches is numbered zero; and (3) TBRs that are neither NNIs

nor SPRs are those for which both reconnected branches have non-zero numbers.
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Fig. 8.3 A greedy stepwise-addition search applied to the example in Fig. 8.2. The best four-taxon
tree is determined by evaluating the lengths of the three trees obtained by joining Taxon
D to Tree 1 containing only the first three taxa. Taxa E and F are then connected to the
five and seven possible locations, respectively, on Trees 4 and 9, with only the shortest
trees found during each step being used for the next step. In this example, the 233-step
tree obtained is not a global optimum (see Fig. 8.2). Circled numbers indicate the order in
which phylogenetic trees are evaluated in the stepwise-addition search.
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Fig. 8.4 Nearest-neighbor interchange (NNI) rearrangements. (a) An NNI around the central branch.
(b) All six of the possible NNIs for the tree in (a).

The reconnection distance can be used to limit the scope of TBR rearrangements

tried during the branch-swapping procedure.

The default strategy used for each of these rearrangement methods is to visit

branches of the “current” tree in some arbitrary and predefined order. At each

branch, all of the non-redundant branch swaps are tried and the score of each

resulting tree is obtained (e.g. using the methods described in Box. 8.1 for par-

simony). If a rearrangement is successful in finding a shorter tree, the previous

tree is discarded and the rearrangement process is restarted on this new tree. If

all possible rearrangements have been tried without success in finding a better

tree, the swapping process terminates. Optionally, when trees are found that are
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Fig. 8.5 Subtree pruning-regrafting (SPR) rearrangements. (a) A tree to be rearranged. (b), (c), (d)
SPRs resulting from pruning of branches x, y, and z, respectively. In addition to these
rearrangements, all terminal taxa (i.e. leaves) would be pruned and reinserted elsewhere
on the tree. (e), (f), (g) Trees resulting from regrafting of branches x, y, and z, respectively,
to other parts of the tree.

equal in score to the current tree (e.g. equally parsimonious trees or trees that have

identical likelihoods within round-off error), they are appended to a list of optimal

trees. In this case, when the arrangement of one tree finishes, the next tree in the

list is obtained and input to the branch-swapping algorithm. If a rearrangement

of this next tree yields a better tree than any found so far, all trees in the current

list are discarded and the entire process is restarted using the newly discovered
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Fig. 8.6 Tree bisection–reconnection (TBR) rearrangements. (a) A tree to be rearranged. (b) Bisec-
tion of branch x and reconnection to branch u; other TBRs would connect x to z, v, and w,
respectively. (c) Branch-numbering for reconnection distances involving branch x (see text).
(d) Bisection of branch y and reconnection of branch r to v; other TBRs would connect r to
w, r to y′, s to v, s to w, s to y′ , y to v, and y to w, respectively. (e) Branch-numbering for
reconnection distances involving branch y (see text). All other branches, both internal and
external, also would be cut in a full round of TBR swapping.

tree. The algorithm then terminates when every possible rearrangement has been

tried on each of the stored trees. In addition to identifying multiple and equally

good trees, this strategy often identifies better trees than would be found if only

a single tree were stored at any one time. This can happen when all of the trees

within one rearrangement of the current tree are no better than the current tree;

however, some of the adjacent trees can, in turn, be rearranged to yield trees that are

better.

Although they are often quite effective, hill-climbing algorithms, such as the

branch-swapping methods implemented in Paup*, are susceptible to the problem

of entrapment in local optima. By only accepting proposed rearrangements that

are equal to, or better than, the current best tree, these algorithms eventually reach

the peak of the slope on which they start; however, the peak may not represent a
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global optimum. One generally successful method for improving the chances of

obtaining a globally optimal solution is to begin the search from a variety of starting

points in the hope that at least one of them will climb the right hill. An option

available in Paup* is to start the search from randomly chosen tree topologies.

However, in practice, these randomly chosen trees usually fit the data so poorly

that they end up merely climbing a foothill on a rugged landscape, and usually

fail to find trees that are as good as those resulting from using a starting tree

obtained by stepwise addition. An alternative method takes advantage of the fact

that, for data sets of non-trivial size and complexity, varying the sequence in which

taxa are added during stepwise addition may produce different tree topologies

that each fit the data reasonably well. Starting branch-swapping searches from a

variety of random-addition-sequence replicates thereby provides a mechanism for

performing multiple searches that each begins at a relatively high point on some

hill, increasing the probability that the overall search will find an optimal tree.

Random-addition-sequence searches are also useful in identifying multiple

“islands” of trees (Maddison, 1991) that may exist. Each island represents all of

the trees that can be obtained by a sequence of rearrangements, starting from any

tree in the island, keeping and rearranging all optimal trees that are discovered.

If two optimal trees exist so that it is impossible to reach one tree by a sequence

of rearrangements starting from the other without passing through trees that are

suboptimal, these trees are on different islands. Because trees from different islands

tend to be topologically dissimilar, it is important to detect multiple islands when

they exist.

The methods described previously are generally effective for data sets containing

up to 100 or so taxa. However, for larger data sets, they are not as efficient as some

newer methods that use a variety of stochastic-search and related algorithms that are

better able to avoid entrapment in local optima (Lewis, 1998; Goloboff, 1999; Nixon,

1999; Moilanen, 2001). Nixon’s (1999) “parsimony ratchet” can be implemented

in Paup* using the PAUPRat program (Sikes & Lewis, 2001). In Section 6.4 of

Chapter 6, different heuristic approaches in a maximum likelihood framework are

discussed.
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The basic capabilities of Paup* (Swofford, 2002; http://paup.csit.fsu.edu) are illus-

trated by analyzing the three different data sets. Because Paup* does not currently

support model-based analyses of amino-acid sequence data, only parsimony anal-

ysis and basic tree searching are described using a glycerol-3-phosphate dehy-

drogenase data set. Distance methods and a variety of additional capabilities are

demonstrated using an amniote mitochondrial DNA data set. Finally, the flexibility

of Paup* for evaluating and comparing maximum likelihood models is described

through the use of an HIV data set. These data sets are also used in other chapters

in this book and are available at www.thephylogenetichandbook.org. By perform-

ing the three different analyses, we illustrate the convenience and power of being

able to switch easily between different optimality criteria in a single program.

Versions of Paup* are available with a full graphical user interface (Macintosh,

system 9 or earlier), a partial graphic user interface (Microsoft Windows), and a

command–line-only interface (UNIX/Linux, MacOSX, and Microsoft Windows

console). Because the command–line interface is available on all platforms, it is

used exclusively for the analyses that follow. For each example, it is assumed that

Paup* has been successfully installed and is invoked by typing paup at the operating-

system prompt, or double-clicking the executable application in the Paup* folder

(Windows versions). Instructions on how to purchase and install Paup* for differ-

ent platforms can be found at http://paup.csit. fsu.edu. At the time of writing, great

effort is being invested into a major update of the program.

Paup* uses the NEXUS format for input data files and command scripts. The

details of this format, a command-reference manual, and quick-start tutorial

describing data-file formats are available at http://paup.csit.fsu.edu/downl.html.

Box 8.4 covers these topics and outlines how to convert the example data sets

from PHYLIP to NEXUS format.

Box 8.4 The Paup* program

The Paup* (Phylogenetic Analysis Using Parsimony∗ and other methods) program is distributed by
Sinauer Associates and purchasing information can be found at http://paup.csit.fsu.edu. The Paup*
installer creates a PAUP folder on the local computer containing the executable application plus a
number of other files, including sample data files in NEXUS format and an extensive documentation
in pdf format. Versions of the program are available for Macintosh, MS Windows, and UNIX/Linux.
The Mac version is controlled using either a full graphical interface (MacOS 9 or earlier) or a command–
line interface; only the command–line interface is available for the other platforms. At the time of
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writing, however, graphical interfaces are being developed for all platforms. Because it is intuitively
easy to switch to the Mac graphic interface for the user familiar with the Paup* commands, this book
focuses on how to use the program through the command–line interface. What follows is a brief
introduction to the NEXUS format and the main Paup* commands. More details can be found in the
quick-start tutorial available at http://paup.csit.fsu.edu/downl.html and in the pdf documentation in
the PAUP folder.

The NEXUS format
Paup* reads input files in NEXUS format. A NEXUS file must begin with the string
#NEXUS
on the first line. The actual sequences plus some additional information about the data set are then
written in the next lines within a so-called data block. A data block begins with the line
Begin data;
and it must end with the line
End;
Here is an example of a NEXUS file containing four sequences ten nucleotides long:
(Dimensions ntax = 4 nchar = 10):
#NEXUS

Begin data;

Dimensions ntax = 4 nchar = 10;

Format datatype = nucleotide gap = -- missing = ? interleave;

Matrix

L20571 ATGACAG-AA

AF10138 ATGAAAG-AT

X52154 AT?AAAGTAT

U09127 ATGA??GTAT

;

End;

The sequences are DNA with gaps indicated by a – symbol, and missing characters indicated by a ?
symbol (format datatype = nucleotide gap = -- missing = ? matchchar =
. Interleave). The aligned sequences are reported on the line after the keyword Matrix. Each
sequence starts on a new line with its name followed by a few blank spaces and then the nucleotide
(or amino-acid) sequence itself. A semicolon (;) must be placed in the line after the last sequence (to
indicate the end of the Matrix block).

Running Paup* (MS Windows version)
By double-clicking the PAUP executable inside the PAUP folder (the version available at the time of
this writing is called win-paup4b10.exe), an Open window appears asking to select a file to be edited or
executed. By choosing edit, the file is opened in a text-editor window, so that it is possible, for example,
to convert its format to NEXUS by manual editing. If the file is already in NEXUS format, it can be
executed by selecting Execute in the Open window. The Paup* Display window appears showing
information about the data in the NEXUS file (e.g. number of sequences, number of characters) which
are now ready to be analyzed by entering Paup* commands in the command–line at the bottom of
the Paup* Display window. By clicking on cancel, an empty Paup* Display window appears. To quit



291 Phylogeny inference based on parsimony: practice

the program, just click the x in the upper right corner of the Paup* Display window, or choose exit
from the File menu.

During a phylogenetic analysis with Paup*, it is good practice to keep a record of all the different
steps, displayed in the program Display window, in a log file. To do that at the beginning of a new
analysis, choose Log output to disk from the File menu. The log file can be viewed later
with any text editor, including Paup* working in edit mode (described previously). The program can
convert aligned sequences from PHYLIP and other formats to NEXUS. In the following example,
the file hivALN.phy (available at www.thephylogenetichandbook.org) is converted from PHYLIP to
NEXUS format:

(1) Place the file hivALN.phy in the PAUP folder.
(2) Run Paup* by double-clicking the executable icon and click on cancel.
(3) Type in the command–line the following:
(4) toNexus fromFile = hivALN.phy toFile = hivALN.nex;

(5) Click execute below the command–line or press Enter.

A file called hivALN.nex will appear in the PAUP folder.
The command toNexus converts files to the NEXUS format. The option fromFile = indicates

the input file with the sequences in format other than NEXUS. toFile = is used to name the new
NEXUS file being created. Note that Paup* is case-insensitive, which means that, for example, the
commands toNexus and TONEXUS are exactly the same. In what follows, uppercase and lowercase
in commands or options are only used for clarity reasons. The file gdp.phy, containing the protein
example data set (available at www.thephylogenetichandbook.org) in PHYLIP interleaved format (see
Box 2.4), is translated into NEXUS with the following command block:

toNexus fromFile = gdp.phy toFile = gdp.nex Datatype = protein

Interleaved = yes;

Note that it is necessary to specify protein for the option Datatype and to set Interleaved to
yes (the starting default option is no).

Commands and options
As discussed in this chapter, Paup* can perform distance-, parsimony-, and maximum-likelihood-
based phylogenetic analyses of molecular sequence data. Such analyses are carried out by entering
commands on the command–line. For most commands, one or more options may be supplied. Each
option has a default value, but the user can assign an alternative value among those allowed for that
particular option by typing option = value. Any command and its options with assigned values
can be typed in the command–line at the bottom of the Paup* Display window and executed by
clicking execute below the command–line or pressing Enter. A semicolon (;) is used to indicate
the end of a particular command. If desired, multiple commands can be entered, each separated from
the next by a semicolon, in which case the commands are executed in the order they appear in the
command–line. The complete list of available options for a given command can be obtained by entering

command--name ?;
in the Paup* command–line, where command-name represents the name of a valid Paup* command.

In this way, it is also possible for the user to check the current value of each option. Try, for example, to
type and execute Set ? (when only one command is executed, the semicolon can be omitted). The
following list will be displayed in the Paup* window:
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Usage: Set [options ...];

Available options:

Keyword ---- Option type --------------------- Current default-

Criterion Parsimony|Likelihood|Distance Parsimony

MaxTrees <integer-value> 100

This list is an abridged version of the possible options and their current values for the Set com-
mand. Set is used to choose whether to perform a parsimony-, maximum-likelihood-, or distance-
based analysis by assigning the appropriate value – selected among the Option type in the list –
to the Criterion option. By default, Paup* performs parsimony-based analysis. By typing set

Criterion=Likelihood or set Criterion=Distance in the command line, the analy-
sis criterion switches to maximum likelihood or distance, respectively.

MaxTrees is another option that can be used in conjunction with the Set command. MaxTrees
controls the maximum number of trees that will be saved by Paup* when a heuristic tree search with
parsimony or maximum likelihood is performed (see Sections 8.4.2 and 8.6). The default value is 100,
but the user can enter a different integer number (e.g. 1000) by typing set MaxTrees = 1000.

8.5 Analyzing data with Paup* through the command–line interface

A typical phylogenetic analysis with Paup* might follow these steps:

(1) Choose a phylogenetic optimality criterion: parsimony (default when the pro-
gram starts), maximum likelihood (Set criterion=likelihood) or distance Set

criterion=distance).
(2) Choose the appropriate settings for the selected parsimony, likelihood, or distance

analysis with the PSet, LSet, or DSet command, respectively.
(3) Compute the tree topology with the HSearch (all optimality criteria) or NJ (dis-

tance) command (see Section 8.7).
(4) Evaluate the reliability of the inferred tree(s) with bootstrapping (Bootstrap

command). Also, for maximum likelihood, the zero-branch-length test is available
(see Section 8.8).

(5) Examine the tree in the Paup* Display window with the DescribeTrees

command; or save it in a tree file with the SaveTrees command by typing
savetrees file=tree − file − name).

A note of caution: By default, the SaveTrees command saves trees in NEXUS

format without including branch lengths. To include branch lengths, type:

savetrees file=tree-file-name brlens=yes;

Trees in NEXUS format can be opened with TreeView of FigTree (see

Chapter 5) or reimported in Paup* (after executing the original sequence data

file) with the following command:

gettrees file=tree-file-name;

Complete details can be found in the pdf manual in the PAUP folder.
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8.6 Basic parsimony analysis and tree-searching

Assuming that the file gpd.nex is located in the current directory, start Paup* and

execute the file (execute gpd.nex). The number of taxa in this data set (i.e.

12) is effectively the maximum for which an exhaustive search is feasible. This can

be accomplished using the command:

alltrees fd=histogram;

The fd=histogram option requests output of the frequency distribution of

tree lengths in the form of a histogram with the default number (i.e. 20) of class

intervals. The resulting output follows:

Exhaustive search completed:

Number of trees evaluated = 654729075

Score of best tree found = 812

Score of worst tree found = 1207

Number of trees retained = 1

Time used = 00:59:02 (CPU time = 00:57:27.8)

Frequency distribution of tree scores:

mean = 1108.333294 sd = 48.441980

g1 = -0.817646 g2 = 0.531509

812.00000 +-------------------------------------

831.75000 | (337)

851.50000 | (4337)

871.25000 | (26850)

891.00000 | (96474)

910.75000 | (305244)

930.50000 | (761800)

950.25000 |# (1797170)

970.00000 |## (3373829)

989.75000 |#### (6937378)

1009.50000 |######## (12789821)

1029.25000 |############# (21003098)

1049.00000 |################## (32167531)

1068.75000 |###################### (49814274)

1088.50000 |######################## (70216478)

1108.25000 |########################### (89088850)

1128.00000 |############################### (98980066)

1147.75000 |################################### (114383861)

1167.50000 |################################ (103567496)

1187.25000 |############################# (46015542)

1207.00000 |## (3398639)

+-------------------------------------
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Thus, it is known with certainty that the shortest tree requires 812 steps and that

there is only one tree of this length. Furthermore, although there are many trees

slightly longer than the shortest tree, these “good” trees represent only a small

fraction of the more than 6.5 × 108 possible trees for 12 taxa. This search requires

significant computation time (i.e. approximately 1 hour on a moderately fast Intel

Core 2 Duo Powerbook). If the distribution of tree lengths is not of interest, the

branch-and-bound algorithm may be used to find an exact solution more quickly

by typing:

bandb;

This search takes less than 1 second and finds the same MP tree. If the data set had

been much larger, finding exact solutions using the exhaustive-search or branch-

and-bound methods would not have been feasible, in which case the HSearch

command could be used to perform a heuristic search. For example,

hsearch/addseq=random nreps=100;

would request a search from 100 starting trees generated by stepwise addi-

tion with random-addition sequences, followed by TBR (the default) branch-

swapping on each starting tree. In this small example, the majority of the random-

addition-sequence replicates finds the best tree obtained using the exact meth-

ods, but a small percentage of random-addition-sequence replicates finds a tree

that requires one additional evolutionary change. These two trees are different

islands.

To examine the trees, the ShowTrees or DescribeTrees commands are

available. ShowTrees simply outputs a diagram representing each tree topology,

but provides no other information:

showtrees all;

The best tree is shown in the output as follows:

Tree number 1 (rooted using default outgroup)

/--------------------------------------- gpd1yeast

|

| /----------------------------- gpdadrome

| |

| | /-------- gpdhuman

| | /-----+

+---------+ | \-------- gpdarabit

| | /------+

| | | \-------------- gpdamouse

| \-------+
| \--------------------- gpdacaeel

|
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| /-------- gpdleish

| /-------------+

| | \-------- gpdtrybb

| |

| /-------+ /-------- gpdaecoli

| | | /------+

| | | | \-------- gpdahaein

\--------+ \------+
| \--------------- gpdpseu

|

\------------------------------ gpdabacsu

Remember that, in general, parsimony analysis does not determine the location

of the root. By default, PAUP* assumes that the first taxon in the data matrix is the

only outgroup taxon and roots the tree at the adjacent internal node leading to a

basal polytomy as indicated previously. In this example, the root should probably

be located between the cluster of bacterial (gpdaecoli, gpdahaein, gpdabacsu and

gpdpseu) and Trypanosomatidae (gpdleish, gpdtrybb) sequences and the cluster

of other eukaryote homologues. This can be achieved by specifying the taxa of one

cluster as the outgroup, for example:

outgroup gpdleish gpdtrybb gpdaecoli gpdahaein gpdabacsu

gpdpseu;

or, alternatively, by

outgroup 7-12;

The tree may now be output according to the new outgroup specification by

reissuing the ShowTrees command. Because this will not display the ingroup as

monophyletic, it is advisable to also specify:

Set outroot=mono;

Instead ofShowTrees, theDescribeTrees command can be used to request

output of the tree in phylogram format, where the branches of the tree are

drawn proportionally to the number of changes (see Chapter 5) assigned under

the parsimony criterion. Other information is also available through additional

DescribeTrees options. For example, the command

describetrees 1/plot=phylogram diagnose;

outputs a drawing of the best tree in phylogram format (now reflecting the new

rooting), plus a table showing the number of changes required by each character

on the first tree, the minimum and maximum possible number of changes on any

tree, and several goodness-of-fit measures derived from the following values:
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Tree number 1 (rooted using user-specified outgroup)

Tree length = 812

Consistency index (CI) = 0.8300

Homoplasy index (HI) = 0.1700

CI excluding uninformative characters = 0.8219

HI excluding uninformative characters = 0.1781

Retention index (RI) = 0.7459

Rescaled consistency index (RC) = 0.6191

/---------------------------------- gpd1yeast

|

| /------------ gpdadrome

22 |

|| | /-- gpdhuman

|| | /-13

|\-------------16 | \---- gpdarabit

| | /------14

| | | \-- gpdamouse

| \----15
| \----------- gpdacaeel

|

| /--------- gpdleish

| /---------17

| | \--------- gpdtrybb

| |

| /---20 /----- gpdaecoli

| | | /--------18

| | | | \------ gpdahaein

\-21 \----------19
| \---------- gpdpseu

|

\------------------ gpdabacsu

Character diagnostics:

Min Tree Max G-

Character Range steps steps steps CI RI RC HI fit

--------------------------------------------------------------------

1 2 2 2 6 1.000 1.000 1.000 0.000 1.000

3 5 5 5 6 1.000 1.000 1.000 0.000 1.000

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

233 6 6 6 7 1.000 1.000 1.000 0.000 1.000

234 1 1 2 2 0.500 0.000 0.000 0.500 0.750

(24 constant characters not shown)
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To assess whether this result is strongly supported, bootstrap or jackknife anal-

ysis (see Chapter 5) can be performed using the Bootstrap or Jackknife

commands. For example, the command

bootstrap nreps=1000;

requests a bootstrap analysis with 1000 pseudoreplicate samples using the cur-

rent optimality criterion and associated settings (hsearch/addseq=random
nreps=100).

Results of the bootstrap analysis can be summarized using a majority-rule
consensus tree that indicates the frequency in which each bipartition, or division

of the taxa into two groups, was present in the trees obtained for each bootstrap

replicate (see Box 5.3). Interpretation of bootstrap values is complicated (e.g. Hillis

& Bull, 1993) (see also Chapter 5), but clearly clades with close to 100% support

can be considered very robust. When the bootstrap analysis is completed, the

majority-rule consensus with bootstrap values is shown:

Bootstrap 50% majority-rule consensus tree

/-------------------------- gpd1yeast(1)

|

| /---------------- gpdadrome(2)

/------------+ |

| | | /------ gpdhuman(3)

| | | /----75----+

| \---100---+ | \------ gpdarabit(5)

| +---100---+

| | \----------------- gpdamouse(4)

| |

| \--------------------------- gpdacaeel(6)

100

| /------ gpdleish(7)

| /---------100--------+

| | \------ gpdtrybb(8)

| |

| | /------ gpdaecoli(9)

| | /---100---+

\----------------------+ | \------ gpdahaein(10)

+----59----+

| \---------------- gpdpseu(12)

|

\--------------------------- gpdabacsu(11)

In addition to the consensus tree, the output includes a table showing the

frequency of all groups that were found at a frequency of 5% or higher, so
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that support for groups not included in the consensus also can be evaluated as

follows:

Bipartitions found in one or more trees and frequency of occur-

rence (bootstrap support values):

1 1

123456789012 Freq %

-----------------------------

........**.. 1000.00 100.0%

..***....... 1000.00 100.0%

......****** 1000.00 100.0%

......**.... 999.67 100.0%

.*****...... 997.07 99.7%

..*.*....... 747.89 74.8%

........**.* 589.53 59.0%

.*...*...... 498.14 49.8%

......****.* 476.07 47.6%

..****...... 407.86 40.8%

........**** 313.48 31.3%

........***. 230.47 23.0%

..**........ 177.42 17.7%

......*****. 135.95 13.6%

.****....... 91.80 9.2%

..........** 77.38 7.7%

...**....... 74.70 7.5%

......****.. 67.33 6.7%

......**...* 59.53 6.0%

Note: the format of this output follows the same convention of the output file

from the program Consense.exe of the Phylip package; see Box 5.4). Another

measure of nodal support is the decay index, or Bremer support (Bremer, 1988;

Donoghue et al., 1992). If the shortest tree inconsistent with the monophyly of

some group is three steps longer than the most parsimonious tree (on which the

group is monophyletic), the decay index is equal to 3. These values can be calculated

in two ways. For groups that decay quickly, all trees within one step, two steps, and

so on, of the shortest tree can be stored and a strict consensus tree calculated for

each length. The following commands can be used to find groups that occur in all

trees within 1, 2, and 3 steps, respectively, of the shortest tree:

hsearch keep=813; contree;

hsearch keep=814; contree;

hsearch keep=815; contree;

For example, a group consisting of human (gpdhuman) and rabbit (gpdarabit)

is found in all trees of length 813 and shorter, but this group disappears from the
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consensus of all trees of length 814 and shorter, indicating that there are some trees

at 814 steps that do not contain this 2-taxon clade. The decay index is therefore,

814 – 812 = 2. Evaluating the meaning of decay indexes is probably even more

difficult than bootstrap values, but any group for which the decay index is less than

4 should probably be viewed with suspicion (DeBry, 2001).

An alternative method for calculating decay indexes is to use the converse con-

straints feature of Paup*. In general, a constraint tree is a user-defined tree that

limits the search space to those trees that are either compatible or incompatible

with the constraint tree. For monophyly constraints, a tree T is compatible with

the constraint tree if it is equal to the constraint tree or if the constraint tree can be

obtained by collapsing one or more branches of T. For calculating decay indexes,

the monophyly of the group of interest is indicated and a search is performed using

converse constraints. For the example discussed previously, the constraint tree can

be defined using the command

constraints humanrabbit=((3,5));

The tree resulting from this definition can then be viewed using the show-

constr command:

Constraint-tree "humanrabbit":

/-------------------------------------- gpd1yeast

|

+-------------------------------------- gpdadrome

|

| /------------------------- gpdhuman

+------------+

| \------------------------- gpdarabit

|

+-------------------------------------- gpdamouse

|

+-------------------------------------- gpdacaeel

|

+-------------------------------------- gpdleish

|

+-------------------------------------- gpdtrybb

|

+-------------------------------------- gpdaecoli

|

+-------------------------------------- gpdahaein

|

+-------------------------------------- gpdabacsu

|

\-------------------------------------- gpdpseu
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Next, a constrained search is conducted as follows:

HSearch enforce constraints=humanrabbit converse addseq=random
nreps=100;

It is especially desirable to use multiple random-addition-sequence starting points

when searching under converse constraints to improve the chances of identifying

the shortest trees that are incompatible with the constraint tree. In this case, five

trees of length 814 are found in the constrained search, yielding a decay index of

2, as was determined previously. This second approach is much more useful for

determining larger decay values, where saving all trees within n steps of the shortest

tree becomes more unwieldy as n increases. As is often but not always the case, the

modest decay index in the example mirrors a modest bootstrap value for the same

group.

8.7 Analysis using distance methods

The same search strategies discussed previously may be used for searching trees

under distance optimality criteria. Because distance methods were covered exten-

sively in Chapter 5, what follows only illustrates how to perform some commonly

used analyses with Paup*, using the vertebrate mtDNA data set as an example.

The DSet command is used to set the type of distance to be computed:

dset distance=jc;

This will set the distances to Jukes–Cantor distances (see Chapter 4); other distance

options available in Paup* (as well as the current settings) can be viewed by typing

Dset?. To calculate a standard NJ tree (Saitou & Nei, 1987) according to the

current distance transformation, use the command

nj;

Before proceeding with further analyses, note that the vertebrate mtDNA data set

exhibits heterogeneous base frequencies among taxa, as can be seen from the output

of the command

basefreq;

In the presence of such heterogeneity, an appropriate distance transformation is

the LogDet distance (see Section 4.13), which can be selected using the command

dset distance=logdet;

Criterion-based searches are performed using the same commands as were previ-

ously described for parsimony analysis. However, because the default optimality
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criterion is parsimony, the following command must be issued to force use of

distance-based optimality criteria.

set criterion=distance;

By default, distance analyses use an NJ method to obtain a starting tree (addseq

=nj). This can be overridden to use random addition sequences, as follows:

hsearch/start=stepwise addseq=random nreps=100;

The resulting tree can then be output as a phylogram:

describe/plot=phylogram;

Minimum evolution score = 2.47415

/-------------------- LngfishAu

|

| /--------- LngfishSA

| /-----------18

| | \--------- LngfishAf

| |

| | /--------- Frog

| | |

| | | /------------ Turtle

\--32 | |

| 20 /---------------- Crocodile

| |\---19
| | \------------ Bird

| /---22

\---31 | |/--------------- Sphenodon

| 21

| \----------------- Lizard

|

| /---------- Human

| |

| /25 /------- Seal

\----30 | | |

| |\-24 /------- Cow

| | \-23
| /--27 \------- Whale

| | |

| | | /----- Mouse

| | \-----26
\--29 \------ Rat

|

| /------------ Platypus

\-28
\---------- Opossum
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This tree places turtles with archosaurs. Constraints may be used to find the best

tree consistent with the conventional placement of turtle (i.e. basal reptile):

constraints turtlebasal = ((Crocodile, Bird, Sphenodon, Lizard),

Turtle);

If you previously enforced converse constraints, this option will persist in the

current Paup* session unless you specify converse = no:

hsearch enforce converse=no constraints=turtlebasal;

The score of the resulting tree is 2.47570, which is barely worse than the best uncon-

strained tree. The low support for the placement of the turtle can be confirmed

using bootstrap analysis:

bootstrap nreps=1000 / enforce=no;

The bootstrap support results, in fact, in only about 51% (this value can slightly

vary because of the stochastic nature of bootstrap resampling).

Minimum evolution (see Chapter 5) is the default method used for distance

analyses in Paup*. This method uses least-squares fit to determine the branch

lengths, but then uses the sum of these branch lengths as the objective function

for computing the score of each tree. The unweighted least-squares and Fitch–

Margoliash (weighted least-squares) variants are also available by replacing n with

0 or 2, respectively, in the following command

dset objective=ls power=n;

prior to beginning a distance-criterion search.

One particularly problematic aspect of distance analysis involves the handling

of negative branch lengths, which often occur in unconstrained optimization of

the least-squares fit between path-length and observed distances. Because negative

branch lengths have no obvious biological meaning, they probably should be

avoided. A constrained optimization is available in Paup* to perform the least-

squares optimization under the restriction of branch-length non-negativity, which

can be requested as follows:

dset negbrlen=prohibit;

We believe that this option provides the most appropriate way to deal with the

negative-branch length problem, but analyses run significantly more slowly when

this option is specified. The default setting in Paup* is to allow negative branch

lengths when performing the least-squares fit calculations, but to set negative values

to zero before computing the score of the tree (negbrlen = setzero). Thus,

if the least-squares fit does not require negative lengths, the tree scores obtained

in this way are identical, whereas trees for which the fit is improved by allowing
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negative branch lengths are still penalized accordingly. Negative branch lengths

also may be set to their absolute value (i.e., negbrlen = setabsval) (Kidd

& Sgaramella-Zonta, 1971) or simply used “as is” (i.e. negbrlen = allow)

(Rzhetsky & Nei, 1992).

It is also possible to input distances directly into Paup* using a NEXUS format

Distances block. This feature permits mixing the tree-searching capabilities of

Paup* with distance transformations that are not available within the program (e.g.

model-based protein distances, but their implementation is in development at the

time of writing). Examples for using user-supplied distance matrixes are given in

the command-reference document in the PAUP folder.

8.8 Analysis using maximum likelihood methods

Maximum likelihood methods are discussed in Chapter 6, including the quartet-
puzzling algorithm implemented in Tree-Puzzle as a heuristic strategy for a maxi-

mum likelihood tree search. Paup* is also able to carry out a number of maximum-

likelihood-based analyses on nucleotide sequence data. In particular, the pro-

gram can perform exhaustive, branch-and-bound, and various types of heuristic

searches, described previously, on aligned nucleotide sequences. The following

example assumes that the HIV data set in NEXUS format (hivALN.nex) (see

Box 8.4) has already been executed in Paup*.

The first task in any maximum likelihood analysis is to choose an appropriate

model. The default model in PAUP* is the HKY model (see Chapter 4) with a

transition : transversion ratio of 2; however, this model should never be used

uncritically. Although automated model-selection techniques are available and

useful (Posada & Crandall, 1998) (see Chapter 10), we find that manual model

selection can be highly informative and may identify good models that might

otherwise be missed. Unfortunately, we cannot recommend a precise solution that

is best for all situations (if such a solution were available, then it could simply

be automated). Instead, we outline the following general strategy, which basically

follows the “top-down dynamical” approach of Chapter 10, but without enforcing

any particular a priori specification of models to be compared.

(1) Start with some reasonable tree for the data. This tree need not be optimal in any
sense, but it should at least be a “good” tree under some criterion.

(2) Set the likelihood model to the most complex one available in Paup* (six-
substitution-type general time-reversible model with some fraction of invariable
sites and rates at variable sites following a gamma distribution ( = GTR+ I+�)).

(3) Estimate all model parameters (i.e. relative substitution rates, base frequencies,
proportion of invariable sites, gamma shape parameter) and calculate the likelihood
score of the tree using the LScores command.
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(4) Examine the parameter estimates carefully in an attempt to identify possible model
simplifications that will not greatly reduce the fit of the model. Evaluate the sim-
plified model and decide whether it is acceptable. If the attempted simplification
is rejected, return to the previous model.

(5) Repeat Step 4 until no further acceptable simplifications can be found.
(6) Proceed to search for an optimal tree using the model and parameter estimates

selected previously.

Some of these steps deserve further elaboration. The reason that the tree used

for Step 1 is not critical is that parameter estimates do not vary much from tree

to tree, as long as the trees are reasonably good explanations of the data (i.e.

those that are much better than randomly chosen trees and include clades that are

well supported under any optimality criterion) (Yang, 1994; Sullivan et al., 1996;

unpublished observations). The determination of whether to reject a simplified

model in Step 4 can be accomplished using likelihood-ratio tests (LRTs), the AIC
or BIC criteria (see Chapter 10), or more subjective methods. Model-selection

criteria are somewhat controversial. LRTs offer the appeal of statistical rigor, but

the choice of an appropriate alpha level for the test (e.g. 0.05, 0.01, 0.001) is

arbitrary. Furthermore, even if a simple model is strongly rejected in favor of a

more complex model, the simpler model may still be better for tree inference

because it requires the estimation of fewer parameters. As models become more

complex, more parameters must be estimated from the same amount of data, so that

the variance of the estimates increases. Conversely, use of an oversimplified model

generally leads to biased estimates. We follow Burnham and Anderson (1998) and

others in preferring models that optimize the trade-off between bias and variance

as a function of the number of parameters in the model. Unfortunately, it seems

impossible to avoid some degree of subjectivity when selecting models, but this

should not be taken as a reason to avoid model-based methods entirely (Sullivan &

Swofford, 2001).

We illustrate our model-selection strategy using the HIV data set. First, we obtain

a starting tree, which can be, for example, a parsimony, an NJ, or a maximum

likelihood tree obtained under a simple model such as Jukes–Cantor. In practice,

the choice of this tree rarely makes a difference in the model selected (unpublished

observations). In the absence of further information, the LogDet transformation

represents a good all-purpose distance, and an NJ tree computed from the LogDet

distance matrix can serve as the starting tree:

dset distance=logdet; nj;

Steps 2 and 3 are then accomplished using the LSet and/or LScores

commands:
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lset nst=6 rmatrix=estimate basefreq=esti-
mate rates=gamma shape=estimate pinvar=estimate;
lscores;

Or, equivalently:

lscores/nst=6 rmatrix=estimate basefreq=esti-
mate rates=gamma shape=estimate pinvar=estimate;

NST represents the number of substitution types. Instead of two (i.e. transitions vs.

transversions), it is assumed that all six of the pairwise substitution rates are poten-

tially different. �-distributed rates for variable sites (see Chapter 4) are specified via

rates=gamma. Rather than taking default values, all parameters are estimated

from the data. The resulting output follows. Note that Paup* reports the tree score

as the negative log likelihood rather than the log likelihood itself; therefore, smaller

likelihood scores are better. This is done so that all optimizations performed by the

program can be treated as minimization problems.

Likelihood scores of tree(s) in memory:

Likelihood settings:

Number of substitution types = 6

Substitution rate-matrix parameters estimated via ML

Nucleotide frequencies estimated via ML

Among-site rate variation:

Assumed proportion of invariable sites = estimated

Distribution of rates at variable sites = gamma

(discrete approximation)

Shape parameter (alpha) = estimated

Number of rate categories = 4

Representation of average rate for each category = mean

These settings correspond to the GTR+G+I model

Number of distinct data patterns under this model = 1013

Molecular clock not enforced

Starting branch lengths obtained using

Rogers-Swofford approximation method

Branch-length optimization = one-dimensional

Newton-Raphson with pass limit = 20, delta = 1e-06

-ln L (unconstrained) = 12463.69362

Tree 1

--------------------

-ln L 17321.15334

Base frequencies:

A 0.359090

C 0.182946

G 0.214583

T 0.243381
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Rate matrix R:

AC 2.27643

AG 4.89046

AT 0.84752

CG 1.14676

CT 4.77744

GT 1.00000

P_inv 0.159207

Shape 0.907088

Searching for simplifications, it is apparent that the substitution rates for the

two transitions, rAG and rCT, are nearly equal (i.e. close to 4.8). Thus, an obvious

first try at simplifying the model involves equating these two rates and reducing

the number of parameters by one. This is accomplished by specifying a particular

submodel of the GTR model using the RClass option, which allows entries in the

rate matrix to be pooled into larger classes. The classification of substitution types

follows the order rAC, rAG, rAT, rCG, rCT, rGT. All rates assigned the same alphabetic

character are pooled into a single category. Thus, the following command pools the

two transitions (rAG and rCT) into one class, but leaves each transversion distinct,

and re-estimates all other parameters (all options from the previous command are

still in effect):

lscores/rclass=(a b c d b e);

The resulting output shows that the tree score is only trivially worse than the full

GTR+I+� model (17321.153 versus 17321.188):

Tree 1

--------------------

-ln L 17321.18757

Base frequencies:

A 0.359680

C 0.182335

G 0.215248

T 0.242737

Rate matrix R:

AC 2.28603

AG 4.84836

AT 0.84841

CG 1.14921

CT 4.84836

GT 1.00000

P_inv 0.159112

Shape 0.907157



307 Phylogeny inference based on parsimony: practice

Thus, it is appropriate to accept the simpler model with the two transitions

pooled into one category.

Often, models with either �-distributed rates or invariable sites alone fit the data

nearly as well as those with both types of rate variation. To examine this possibility

for the HIV data set, the reduced model is evaluated, but with all sites variable

(pinv = 0) and following a gamma distribution (still the current setting):

lscores/pinv=0;

The likelihood score obtained for this model is 17325.566, or 4.378 units worse.

An LRT can be performed by multiplying this score difference by 2 and comparing

to a chi-squared distribution with 1 degree of freedom (see Chapter 10). The

P-value for this test is 0.0031, suggesting that the invariable sites plus gamma model

(I + �) fits significantly better than the model alone. The AIC (see Chapter 10)

also favors the I + � rate-variation model.

Next, we evaluate the model with some sites invariable, and all variable sites

evolving at the same rate:

lsc/rates=equal pinv=est;

The likelihood score for this model, 17455.811, is even worse, so it also is rejected

in favor of the I + � model.

After failing to simplify the model by eliminating among-site rate-variation

parameters, attention can be returned to the substitution rate matrix. Inspection

of this matrix reveals that the relative rate for the CG substitution (rCG = 1.149) is

not much different than rGT = 1. Thus, these two substitutions also can be pooled

and the resulting likelihood score calculated:

lsc/rclass=(a b c d b d) rates=gamma shape=estimate
pinv=estimate;

The resulting likelihood score and parameter estimates follow:

Tree 1

--------------------

-ln L 17321.52578

Base frequencies:

A 0.359704

C 0.183294

G 0.215397

T 0.241606

Rate matrix R:

AC 2.16054

AG 4.58543

AT 0.80136



308 David L. Swofford and Jack Sullivan

CG 1.00000

CT 4.58543

GT 1.00000

P_inv 0.161272

Shape 0.914014

The likelihood score (17321.526) is not much worse than the previous acceptable

model (17321.188). The difference in scores is equal to 0.338, and an LRT using

twice this value with 1 degree of freedom yields a P-value of 0.41. Thus, the

simpler model is preferred. Although we do not show the results, further attempts

to simplify the model by additional substitution-pooling (e.g. rclass=(a b

c c b c)) or assuming equal base frequencies (i.e. basefreq=equal) yield

likelihood scores that are significantly worse than this model. It is interesting that

the model chosen here, to our knowledge, has not been “named” and is not always

available as a model setting in phylogenetic programs.

As an aside, the RClass option may be used to select other specific mod-

els. For example, lset rclass=(a b a a c a); can be used to specify

the Tamura–Nei model (see Chapter 4), which assumes one rate for transver-

sions, a second rate for purine transitions, and a third rate for pyrimidine tran-

sitions. RClass is meaningful only when the substitution rate matrix is being

estimated (rmatrix=estimate) and the number of substitution types is set

to six (nst=6). Specific (relative) rates also may be specified using the

RMatrix option. For example, the command

lset rmatrix=(1 5 1 1 2.5);

also specifies a Tamura–Nei model in which purine and pyrimidine transitions

occur at a rate of 5 and 2.5 times (respectively) that of transversions. Note that

these rates are assigned relative to the G–T rate, which is assigned a value of 1 and

is not included in the list of RMatrix values.

Having chosen a model, we can now proceed to search for an optimal tree. To

set the criterion to maximum likelihood, execute the following command:

set criterion=likelihood;

Because the criterion is now likelihood, the HSearch command will perform a

maximum likelihood tree search using the default or current model settings. To

reset the model chosen, the following command can be issued:

lset nst=6 rclass=(a b c d b d) rmatrix=estimate base-

freq=estimate rates=gamma shape=estimate pinv=estimate;

With these settings, Paup* will estimate all model parameters on each tree evaluated

in the search. Whereas in general this is the ideal method, it is too slow for data sets
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containing more than a small number of taxa. A more computationally tractable

approach uses a successive approximations strategy that alternates between param-

eter estimation and tree search. First, the parameter values are estimated on a

starting tree (e.g. the same NJ tree used for the model-selection procedure). These

values are then fixed at their estimated values for the duration of a heuristic search.

If the search finds a new tree that is better than the tree for which the parameter

values were estimated, then the parameter values are re-estimated on this new tree.

The iteration continues until the same tree is found in two consecutive searches.

To implement this iterative strategy for the HIV example, the parameter values

must first be fixed to the values estimated during the model-selection procedure.

An easy way to do this is as follows (assuming that the NJ tree is still in memory

from before):

lscores;

lset rmatrix=previous basefreq=previous shape=previous
pinv=previous;

Each parameter set to “previous” in this command is assigned the value that

was most recently estimated for that parameter (i.e. in the preceding LScores

command when the parameters were set to “estimate”). A standard heuris-

tic search using simple stepwise addition followed by TBR rearrangements (see

Section 8.4.2) is performed using the command hseach. If the search strategy

options have been changed due to previous settings in this session, set them back

to default (AddSeq=simple NReps=10):

hsearch;

A tree of likelihood score 17 316.909 is found, which is an improvement over the

NJ starting tree. Consequently, the model parameters are re-estimated on this new

tree:

lset rmatrix=estimate basefreq=estimate shape=estimate
pinv=estimate; Lscores;

With the newly optimized parameter values, the likelihood score of the tree found

by the previous search improves only very slightly to 17316.896:

Tree 1

--------------------

-ln L 17316.89554

Base frequencies:

A 0.359776

C 0.183578

G 0.215216

T 0.241429
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Rate matrix R:

AC 2.17187

AG 4.58751

AT 0.80055

CG 1.00000

CT 4.58751

GT 1.00000

P_inv 0.156966

Shape 0.900917

The parameter estimates are very close to those obtained using the original NJ

tree (discussed previously), which is why the likelihood score did not improve

appreciably. Nonetheless, to make sure that the change in parameter values will

not lead to a new optimal tree, the search should be repeated, fixing the parameter

values to these new estimates:

lset rmatrix=previous basefreq=previous shape=previous
pinv=previous;
hsearch;

This search finds the same tree as the previous one did, so the iterations can stop.

Analyses of both real and simulated data sets provide reassurance that this iterative,

successive-approximations strategy can be safely used as a much faster approach in

ML tree topology estimation (Sullivan et al., 2005).

Although it is not important for the relatively small HIV data set, it may be

desirable for data sets containing larger numbers of taxa to reduce the scope of

the rearrangements using the ReconLimit option. If ReconLimit is set to x,

then any rearrangement for which the reconnection distance (see Section 8.4.2)

exceeds x is not evaluated. For data sets of 30 or more taxa, use of values such

as ReconLimit=12 can often substantially reduce the time required for a TBR

search without greatly compromising its effectiveness.

As a starting tree for the heuristic search, it is possible to use an NJ tree (instead

of a tree obtained by stepwise addition) with the command HSearch Start =
NJ;. Although the program finds the same maximum likelihood tree for the HIV

example data set, this will not necessarily be true for other data sets. In general, the

use of different starting trees permits a more thorough exploration of the tree space,

and it is always a good idea to compare results of alternative search strategies. Use

of random-addition sequences (i.e. HSearch AddSeq=Random;) is especially

desirable. The default number of random-addition-sequence replicates is rather

small (10); the option NReps=n can be used to specify a different number of

replicates n.

As for parsimony and distance methods, Paup* can perform bootstrapping and

jackknifing analyses under the likelihood criterion, although these analyses may be
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very time-consuming. In addition, a zero-branch-length test can be performed on

the maximum likelihood tree by setting the ZeroLenTest option of the LSet

command to full and then executing the DescribeTrees command:

lset zerolentest=full; describetrees;

If more than one tree is in memory, the result of the test is printed on the screen

(and/or in the log file: see Box 8.4) for each tree. In the zero-branch-length test,

the statistical support for each branch of a previously estimated maximum likeli-

hood tree is obtained as follows. After collapsing the branch under consideration

(by constraining its length to zero), the likelihood of the tree is recalculated and

compared with the likelihood of the original tree. If the likelihood of the former

is significantly worse than that of the latter according to an LRT, the branch is

considered statistically supported. As a result of executing these commands, Paup*
prints out a list of all pairs of neighboring nodes in the tree (including terminal

nodes), each pair with a corresponding p-value giving the support for the branch

connecting the two nodes:

Branch lengths and linkages for tree #1 (unrooted)

Node Connected Branch Standard --- L.R. test ---

to node length error lnL diff P*

-------------------------------------------------------------------------

L20571(1) 26 0.95536 0.06838 399.948 <0.001

15 26 0.10463 0.02367 8.449 <0.001

AF103818 (2) 15 0.33927 0.02887 137.486 <0.001

X52154 (3) 15 0.33452 0.02858 125.842 <0.001

25 26 0.21406 0.02630 32.721 <0.001

U09127 (4) 25 0.07713 0.00837 46.112 <0.001

24 25 0.02213 0.00682 4.197 0.004

16 24 0.06190 0.00724 110.645 <0.001

U27426 (5) 16 0.06438 0.00663 132.276 <0.001

U27445 (6) 16 0.04666 0.00582 86.951 <0.001

23 24 0.01643 0.00438 14.143 <0.001

17 23 0.07067 0.00754 157.899 <0.001

AF067158 (7) 17 0.05477 0.00603 126.407 <0.001

U09126 (8) 17 0.04146 0.00536 73.886 <0.001

22 23 0.03517 0.00583 47.726 <0.001

18 22 0.04925 0.00614 99.613 <0.001

U27399 (9) 18 0.04582 0.00557 99.612 <0.001

U43386 (10) 18 0.05442 0.00601 132.606 <0.001

21 22 0.03817 0.00549 69.776 <0.001

20 21 0.01060 0.00319 11.560 <0.001

19 20 0.00639 0.00237 8.840 <0.001

L02317 (11) 19 0.03638 0.00456 136.741 <0.001
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AF042106 (14) 19 0.04899 0.00529 199.615 <0.001

AF025763 (12) 20 0.04503 0.00512 190.207 <0.001

U08443 (13) 21 0.04405 0.00519 138.658 <0.001

--------------------------------------------------------------------------

Sum 2.81762

* Probability of obtaining a likelihood ratio as large or larger than the

observed ratio under the null

hypothesis that a branch has zero length (full reoptimization after forc-

ing a branch length to zero)

-Ln likelihood = 17316.89554

In this case, all the branches in the maximum likelihood tree seem to be robustly

supported by this test. However, the test only assesses whether a given resolution

of a trichotomy is a significant improvement relative to leaving the trichotomy

unresolved. For example, it is possible for incompatible groups on different trees

to both receive significant support using this test. The fact that not all of the

clades received high bootstrap values in the parsimony and NJ trees, as well as

in maximum likelihood bootstrap analyses (not shown), highlights the need for

caution in interpreting the results of this test.


