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Dune Meadow Data

In this book the same set of vegetation data will be used in the chapters on
ordination and cluster analysis. This set of data stems from a research project
on the Dutch island of Terschelling (Batterink & Wijffels 1983). The objective
of this project was to detect a possible relation between vegetation and management
in dune meadows. Sampling was done in 1982. Data collection was done by the
Braun-Blanquet method; the data are recorded according to the ordinal scale
of van der Maarel (1979b). In each parcel usually one site was selected; only
in cases of great variability within the parcel were more sites used to describe
the parcel. The sites were selected by throwing an object into a parcel. The point
where the object landed was fixed as one corner of the site. The sites measure
2x2 m2. The sites were considered to be representative of the whole parcel. From
the total of 80 sites, 20 have been selected to be used in this book (Table 0.1).
This selection expresses the variation in the complete set of data. The names
of the species conform with the nomenclature in van der Meijden et al. (1983)
and Tutin et al. (1964-1980).

Data on the environment and land-use that were sampled in this project are
(Table 0.2):
- thickness of the Al horizon
- moisture content of the soil
- grassland management type
- agricultural grassland use
- quantity of manure applied.
The thickness of the Al horizon was measured in centimetres and it can therefore
be handled as a quantitative variable. In the dunes, shifting sand is a normal
phenomenon. Frequently, young developed soils are dusted over by sand, so that
soil development restarts. This may result in soils with several Al horizons on
top of each other. Where this had occurred only the Al horizon of the top soil
layer was measured.
The moisture content of the soil was divided into five ordered classes.lt is therefore
an ordinal variable.
Four types of grassland management have been distinguished:
- standard farming (SF)
- biological farming (BF)
- hobby-farming (HF)
- nature conservation management (NM).
The grasslands can be used in three ways: as hayfields, as pasture or a combination
of these (intermediate). Both variables are nominal but sometimes the use of the



grassland is handled as an ordinal variable (Subsection 2.3.1). Therefore a ranking
order has been made from hay production (1), through intermediate (2) to
grazing (3).
The amount of manuring is expressed in five classes (0-4). It is therefore an ordinal
variable.

All ordinal variables are treated as if they are quantitative, which means that
the scores of the manure classes, for example, are handled in the same way as
the scores of the Al horizon. The numerical scores of the ordinal variables are
given in Table 0.2. There are two values missing in Table 0.2 . Some computer
programs cannot handle missing values, so the mean value of the corresponding
variable has been inserted. The two data values are indicated by an asterisk.

Table 0.1. Dune Meadow Data. Unordered table that contains 20 relevees (columns) and
30 species (rows). The right-hand column gives the abbreviation of the species names listed
in the left-hand column; these abbreviations will be used throughout the book in other
tables and figures. The species scores are according to the scale of van der Maarel (1979b).

OOOOOOOOO11111111112
12345678301234567830

1 Rchillea miLLefolium 13..222..4 2... Rchmil
2 Rgrostis stoLonifera ..48...43..45447...5 Rgr sto
3 Rira praecox 2.3. Rir pra
4 Rlopecurus geniculatus .272...53..85..4.... RLo gen
5 Rnthoxanthum odoratum ....432..4 4.4. Rnt odo
6 Bellis perennis .3222....2 2.. Bel per
7 Bromus hordaceus .4.32.2. .4 Bro nor
8 Chenopodium album 1 Che alb
9 Cirsium arvense . . .2 Cir arv
10 ELeocharis palustris 4 458. . .4 ELe pal
11 Elymus repens 44444. . .6 Ely rep
12 Empetrum nigrum 2. Emp nig
13 Hypochaeris radicata 2 2.5. Hyp rad
14 Juncus articulatus 44 33. . .4 Jun art
15 Juncus bufonius 2.4. .43 Jun buf
16 Leontodon autumnal is .52233332352222.2562 Leo aut
17 Lolium perenne 75652664267 2.. Lol per
18 Plantago lanceolata 555. .33 23. . PLa Ian
13 Poa pratensis 44542344444.2... 13. . Poa pra
20 Poa trivialis 2765645454.43..2 Poa tri
21 Potentilla palustris 22 Pot pal
22 Ranunculus f lammula 2. . . .2222. . .4 Ran f La
23 Rumex acetosa . . . .563.2. .2 Rum ace
24 5agina procumbens . . .5. . .22.242 3. 5ag pro
25 5alix repens 335 5al rep
26 Trifolium pratense . . . .252 Tri pra
27 Trifolium repens .52125223633261..22. Tri rep
28 Vicia lathyroides 12 1 . . Vic lat
29 Brachythecium rutabulum ..2226222244..44.634 Bra rut
30 Calliergonel la cuspidata 4.3. ..3 Cal cus



Table 0.2. Environmental data (columns) of 20 relevees (rows) from
the dune meadows. The scores are explained in the description of the
Dune Meadow research project above; asterisk denotes mean value
of variable.

Sample Al Moisture Management Use Manure
number horizon class type class

1 2.8 1 SF 2 4
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

3.5
4.3
4.2
6.3
4.3
2.8
4.2
3.7
3.3
3.5
5.8
6.0
9.3

11.5
5.7
4.0
4.6*
3.7
3.5

1
2
2
1
1
1
5
4
2
1
4
5
5
5
5
2
1
5
5

BF
SF
SF
HF
HF
HF
HF
HF
BF
BF
SF
SF
NM
NM
SF
NM
NM
NM
NM

2
2
2
1
2
3
3
1
1
3
2
2
3
2
3
1
1
1
1

2
4
4
2
2
3
3
1
1
1
2*
3
0
0
3
0
0
0
0



5 Ordination

C.J.F. ter Braak

5.1 Introduction

5.1.1 Aim and usage

Ordination is the collective term for multivariate techniques that arrange sites
along axes on the basis of data on species composition. The term ordination
was introduced by Goodall (1954) and, in this sense, stems from the German
4Ordnung\ which was used by Ramensky (1930) to describe this approach.

The result of ordination in two dimensions (two axes) is a diagram in which
sites are represented by points in two-dimensional space. The aim of ordination
is to arrange the points such that points that are close together correspond to
sites that are similar in species composition, and points that are far apart correspond
to sites that are dissimilar in species composition. The diagram is a graphical
summary of data, as in Figure 5.1, which shows three groups of similar sites.
Ordination includes what psychologists and statisticians refer to as multidimen-
sional scaling, component analysis, factor analysis and latent-structure analysis.

Figure 5.1 also shows how ordination is used in ecological research. Ecosystems
are complex: they consist of many interacting biotic and abiotic components.
The way in which abiotic environmental variables influence biotic composition
is often explored in the following way. First, one samples a set of sites and records
which species occur there and in what quantity (abundance). Since the number
of species is usually large, one then uses ordination to summarize and arrange
the data in an ordination diagram, which is then interpreted in the light of whatever
is known about the environment at the sites. If explicit environmental data are
lacking, this interpretation is done in an informal way; if environmental data
have been collected, in a formal way (Figure 5.1). This two-step approach is indirect
gradient analysis in the sense used by Whittaker (1967). By contrast, direct gradient
analysis is impossible without explicit environmental data. In direct gradient
analysis, one is interested from the beginning in particular environmental variables,
i.e. either in their influence on the species as in regression analysis (Chapter 3)
or in their values at particular sites as in calibration (Chapter 4).

Indirect gradient analysis has the following advantages over direct gradient
analysis. Firstly, species compositions are easy to determine, because species are
usually clearly distinguishable entities. By contrast, environmental conditions are
difficult to characterize exhaustively. There are many environmental variables and
even more ways of measuring them, and one is often uncertain of which variables
the species react to. Species composition may therefore be a more informative
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Figure 5.1 Outline of the role of ordination in community ecology, showing the typical
format of data sets obtained by sampling ecosystems and their analysis by direct gradient
and indirect gradient analysis. Also shown is the notation used in Chapter 5. Point of
site in the ordination diagram (•).

indicator of environment than any given set of measured environmental variables.
Ordination can help to show whether important environmental variables have
been overlooked: an important variable has definitely been missed if their is no
relation between the mutual positions of the sites in the ordination diagram and
the measured environmental variables.

Secondly, the actual occurrence of any individual species may be too unpre-
dictable to discover the relation of its occurrence to environmental conditions
by direct means (Chapter 3) and therefore more general patterns of coincidence
of several species are of greater use in detecting species-environment relations.

Thirdly, for example in landscape planning, interest may from the onset be
focused more on the question of which combinations of species can occur, and
less on the behaviour of particular species. Regression analysis of single species
then provides too detailed an account of the relations between species and
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environment. The ordination approach is less elaborate and gives a global picture,
but - one hopes - with sufficient detail for the purpose in hand.

Between regression analysis and ordination (in the strict sense) stand the canonical
ordination techniques. They are ordination techniques converted into multivariate
direct gradient analysis techniques; they deal simultaneously with many species
and many environmental variables. The aim of canonical ordination is to detect
the main pattern in the relations between the species and the observed environment.

5.1.2 Data approximation and response models in ordination

Ordination techniques can be viewed in two ways (Prentice 1977). According
to one view, the aim of ordination is to summarize multivariate data in a convenient
way in scatter diagrams. Ordination is then considered as a technique for matrix
approximation (as the data are usually presented in the two-way layout of a matrix).
A second, more ambitious, view assumes from the beginning that there is an
underlying (or latent) structure in the data, i.e. that the occurrences of all species
under consideration are determined by a few unknown environmental variables
(latent variables) according to a simple response model (Chapter 3). Ordination
in this view aims to recover that underlying structure. This is illustrated in Figure
5.2 for a single latent variable. In Figure 5.2a, the relations of two species, A
and B, with the latent variable are rectilinear. In Figure 5.2c they are unimodal.
We now record species abundance values at several sites and plot the abundance
of Species A against that of Species B. If relations with the latent variable were
rectilinear, we would obtain a straight line in the plot of Species B against Species
A (Figure 5.2b), but if relations were unimodal, we would obtain a complicated
curve (Figure 5.2d). The ordination problem of indirect gradient analysis is to
infer about the relations with the latent variable (Figures 5.2a,c) from the species
data only (Figure 5.2b,d). From the second viewpoint, ordination is like regression
analysis, but with the major difference that in ordination the explanatory variables
are not known environmental variables, but 'theoretical'variables. These variables,
the latent variables, are constructed in such a way that they best explain the
species data. As in regression, each species thus constitutes a response variable,
but in ordination these response variables are analysed simultaneously. (The
distinction between these two views of ordination is not clear-cut, however. Matrix
approximation implicitly assumes some structure in the data by the mere way
the data are approximated. If the data structure is quite different from the assumed
structure, the approximation is inefficient and fails.)

The ordination techniques that are most popular with community ecologists,
are principal components analysis (PCA), correspondence analysis (CA), and
techniques related to CA, such as weighted averaging and detrended correspondence
analysis. Our introduction to PCA and CA will make clear that PCA and CA
are suitable to detect different types of underlying data structure. PCA relates
to a linear response model in which the abundance of any species either increases
or decreases with the value of each of the latent environmental variables (Figure
5.2a). By contrast, CA is related, though in a less unequivocal way, to a unimodal
response model (Figure 5.2c). In this model, any species occurs in a limited range
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Figure 5.2 Response curves for two species A and B against a latent variable x (a, c)
and the expected abundances of the species plotted against each other (b, d), for the straight
line model (a, b) and a unimodal model (c, d). The numbers refer to sites with a particular
value for x. The ordination problem is to make inferences about the relations in Figures
a and c from species data plotted in Figures b and d.

of values of each of the latent variables. PCA and CA both provide simultaneously
an ordination for the sites and an ordination for the species. The two ordinations
may be plotted in the same diagram to yield 'joint plots' of site and species points,
but the interpretation of the species points is different between PCA and CA.

PCA and CA operate directly on the species data. By contrast, multidimensional
scaling is a class of ordination techniques that operate on a table of dissimilarity
values between sites. To apply these techniques, we must therefore first choose
an appropriate dissimilarity coefficient to express the dissimilarity in species
composition between any two sites (Subsection 6.2.2). After choosing one, we
can calculate the dissimilarity values of all pairs of sites required as input for
multidimensional scaling. CA and PCA may also be considered as multidimensional
scaling techniques, but ones that use a particular dissimilarity coefficient.
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5.1.3 Outline of Chapter 5

Section 5.2 introduces CA and related techniques and Section 5.3 PCA. Section
5.4 discusses methods of interpreting ordination diagrams with external (envir-
onmental) data. It is also a preparation for canonical ordination (Section 5.5).
After a discussion of multidimensional scaling (Section 5.6), Section 5.7 evaluates
the advantages and disadvantages of the various ordination techniques and
compares them with regression analysis and calibration. After the bibliographic
notes (Section 5.8) comes an appendix (Section 5.9) that summarizes the ordination
methods described in terms of matrix algebra.

5.2 Correspondence analysis (CA) and detrended correspondence analysis (DCA)

5.2.1 From weighted averaging to correspondence analysis

Correspondence analysis (CA) is an extension of the method of weighted
averaging used in the direct gradient analysis of Whittaker (1967) (Section 3.7).
Here we describe the principles in words; the mathematical equations will be
given in Subsection 5.2.2.

Whittaker, among others, observed that species commonly show bell-shaped
response curves with respect to environmental gradients. For example, a plant
species may prefer a particular soil moisture content, and not grow at all in places
where the soil is either too dry or too wet. In the artificial example shown in
Figure 5.3a, Species A prefers drier conditions than Species E, and the Species
B, C and D are intermediate. Each of the species is therefore largely confined
to a specific interval of moisture values. Figure 5.3a also shows presence-absence
data for Species D: the species is present at four of the sites.

We now develop a measure of how well moisture explains the species data.
From the data, we can obtain a first indication of where a species occurs along
the moisture gradient by taking the average of the moisture values of the sites
in which the species is present. This average is an estimate of the optimum of
the species (the value most preferred), though not an ideal one (Section 3.7).
The average is here called the species score. The arrows in Figure 5.3a point
to the species scores so calculated for the five species. As a measure of how well
moisture explains the species data, we use the dispersion ('spread') of the species
scores. If the dispersion is large, moisture neatly separates the species curves and
moisture explains the species data well. If the dispersion is small, then moisture
explains less. To compare the explanatory power of different environmental
variables, each environmental variable must first be standardized; for example
by subtracting its mean and dividing by its standard deviation.

Suppose that moisture is the 'best' single environmental variable measured in
the artificial example. We might now wish to know whether we could in theory
have measured a variable that explains the data still better. CA is now the technique
that constructs the theoretical variable that best explains the species data. CA
does so by choosing the best values for the sites, i.e. values that maximize the
dispersion of the species scores (Figure 5.3b). The variable shown gives a larger
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1 SD

AE B D C
folded CA axis

Figure 5.3 Artificial example of unimodal response curves of five species (A-E) with respect
to standardized variables, showing different degrees of separation of the species curves,
a: Moisture, b: First axis of CA. c: First axis of CA folded in this middle and the response
curves of the species lowered by a factor of about 2. Sites are shown as dots at y — 1
if Species D is present and at y = 0 if Species D is absent. For further explanation, see
Subsections 5.2.1 and 5.2.3.

dispersion than moisture; and consequently the curves in Figure 5.3b are narrower,
and the presences of Species D are closer together than in Figure 5.3a.

The theoretical variable constructed by CA is termed the first ordination axis
of CA or, briefly, the first CA axis; its values are the site scores on the first
CA axis.

A second and further CA axes can also be constructed; they also maximize
the dispersion of the species scores but subject to the constraint of being uncorrelated
with previous CA axes. The constraint is intended to ensure that new information
is expressed on the later axes. In practice, we want only a few axes in the hope
that they represent most of the variation in the species data.

So we do not need environmental data to apply CA. CA 'extracts' the ordination
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axes from the species data alone. CA can be applied not only to presence-absence
data, but also to abundance data; for the species scores, we then simply take
a weighted average of the values of the sites (Equation 3.28).

5.2.2 Two-way weighted averaging algorithm

Hill (1973) introduced CA into ecology by the algorithm of reciprocal averaging.
This algorithm shows once more that CA is an extension of the method of weighted
averaging.

If we have measured an environmental variable and recorded the species
composition, we can estimate for each species its optimum or indicator value
by averaging the values of the environmental variable over the sites in which
the species occurs, and can use the averages so obtained to rearrange the species
(Table 3.9). If the species show bell-shaped curves against the environmental
variable, the rearranged table will have a diagonal structure, at least if the optima
of the curves differ between the species (Table 3.9). Conversely, if the indicator
values of species are known, the environmental variable at a site can be estimated
from the species that it contains, by averaging the indicator values of these species
(Section 4.3) and sites can be arranged in order of these averages. But, these
methods are only helpful in showing a clear structure in the data if we know
in advance which environmental variable determines the occurrences of the species.
If this is not known in advance, the idea of Hill (1973) was to discover the 'underlying
environmental gradient' by applying this averaging process both ways in an iterative
fashion, starting from arbitrary initial values for sites or from arbitrary initial
(indicator) values for species. It can be shown mathematically that this iteration
process eventually converges to a set of values for sites and species that do not
depend on the initial values. These values are the site and species scores of the
first CA axis.

We illustrate now the process of reciprocal averaging. For abundance data,
it is rather a process of two-way weighted averaging. Table 5.1a shows the Dune
Meadow Data (Table 0.1), arranged in arbitrary order. We take as initial values
for the sites the numbers 1 to 20, as printed vertically below Table 5.1a. As before,
we shall use the word 'score', instead of 'value'. From the site scores, we derive
species scores by calculating the weighted average of the site scores for each species.
If we denote the abundance of species k at site i by yki, the score of site / by
JC, and the score of species k by uk, then the score of species k becomes the
weighted average of site scores (Section 3.7)

uk = £"=1 yki xil^v=\ yki Equation 5.1

For Achillea millefolium in Table 5.1a, we obtain u, = ( 1 X 1 + 3 X 2 + 2
X 5 + 2 X 6 + 2 X 7 + 4 X 1 0 + 2 X 17)/(1 + 3 + 2 + 2 + 2 + 4 + 2)
= 117/16 = 7.31. The species scores thus obtained are also shown in Table 5.1a.
F rom these species scores, we derive new site scores by calculating for each site
the weighted average of the species scores, i.e.
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Table 5.1a

Species

k

1
2
3
4
5
6
7
a
3
10
11
12
13
14
15
16
17
18
13
20
21
22
23
24
25
26
27
28
23
30

• * /

Och
Ogr
Rir
RLo
Rnt
Bel
Bro
Che
Cir
ELe
ELy
Emp
Hyp
Jun
Jun
Leo
LoL
Pla
Poa
Poa
Pot
Ran
Rum
Sag
Sal
Tri
Tri
Vic
Bra
Cal

mil
sto
pra
gen
odo
per
nor
alb
arv
pal
rep
nig
rad
art
buf
aut
per
Ian
pra
tri
pal
f la
ace
pro
rep
pra
rep
Lat
rut
cus

Sites (i)
00000000011111111112
12345678901234567890

13 222 4 2
48 43 45447 5

2 3
272 53 85 4

432 4 4 4
3222 2 2
4 32 2 4

1
2

4 458 4
44444 6

2
2 2 5

44 33 4
2 4 43

52233332352222 2562
75652664267 2

555 33 23
44542344444 2 13
2765645454 49 2

22
2 2222 4

563 2 2
5 22 242 3

335
252

52125223633261 22
12 1

2226222244 44 634
4 3 3

11111111112
12345678901234567890

uk

7.31
11.33
18.20
9.03

11 .24
6.62
5.60
13.00
4.00
14.84
4.38
19.00
16.78
13.39
10.54
10.94
6.31
9.27
7.25
7.25
14.50
15. 14
6.89
10.35
19. 18
6.00
9.47
12.50
12.02
16.40

Table 5.1 Two-way weighted averaging algorithm of CA applied to
the Dune Meadow Data presented in a preliminary section of this
book. The site numbers and site scores are printed vertically, a:
Original data table with at the bottom the initial site scores, b: Species
and sites rearranged in order of their scores obtained after one cycle
of two-way weighted averaging, c: Species and sites arranged in order
of their final scores (CA scores). Note the minus signs in the site
scores; for example, the score of Site 17 is -1.46.



Table 5.

Species

k
3 Cir
11 ELy
7 Bro

26 Tri
17 Lol
6 Bel
23 Rum
13 Poa
20 Poa
1 Rch
4 Rio
18 PLa
27 Tri
24 Sag
15 Jun
16 Leo
5 Rnt
2 Rgr
23 Bra
28 Vic
8 Che
14 Jun
21 Pot
10 ELe
22 Ran
30 CaL
13 Hyp
3 Rir

12 Emp
25 5a L

xi

lb

arv
rep
hor
pra
per
per
ace
pra
tri
mil
gen
Lan
rep
pro
buf
aut
odo
sto
rut
lat
alb
art
pal
pal
fla
cus
rad
pra
nig
rep

Sites (/)
00000010011101111112
12534706331288764530

2
44444 6
42 324
2 2 5

752656662 7 42
3222 2 2
5 3 62 2

44254443424 431
2766554453 44 2
132 242 2
2 72 35 85 4
5 535 3 32
5221265323322 612

5 22242 3
2 43 4

53223332252352 2262
4 243 4 4
48 35 44 744 5
2222262 4426 4 434

1 2 1
1

4 4 3 3 4
22

4 845 4
2 2 222 4

34 3
2 2 5

2 3
2

3 35

11111111
67788888833300122234

24301134867737868383
56348878043843124736

4.00
4.38
5.60
6.00
6.31
6.62
6.83
7.25
7.25
7.31
3.03
3.27
3.47
10.35
10.54
10.34
11.24
11.33
12.02
12.50
13.00
13.33
14.50
14.84
15.14
16.40
16.78
18.20
13.00
13.18

Table 5.

Species

k
3 Rir
5 Rnt
1 Rch

26 Tri
13 Hyp
18 Pla
12 Emp
7 Bro
23 Rum
28 Vic
6 Bel
17 Lol
13 Poa
11 ELy
16 Leo
20 Poa
27 Tri
3 Cir
24 Sag
15 Jun
23 Bra
4 RLo
8 Che
25 Sal
2 Rgr
14 Jun
22 Ran
10 ELe
21 Pot
30 CaL

xi

lc

pra
odo
mil
pra
rad
Lan
nig
hor
ace
Lat
per
per
pra
rep
aut
tri
rep
arv
pro
buf
rut
gen
alb
rep
sto
art
fla
paL
pal
cus

Sites (0
10100011010001101121
75076131283432385406

2 3
44423 4
224221 3
2 25
2 52
25355 3 3

2
242 4 3
5 36 22
1 2 1

22 3222
26667 752652 4
124434 443544 24
4 4 4 446
23333 6555222223222
64542 7 655434 2
2625 235221332216

2
32 52422

2 443
2226 34 62224 24 44

2 723855 4
1

3 3 5
4834544457
4 43 43
222242
45448
22
433

10000000000000001112

438888666310024 73330
65876284411638262250

uk

-0.33
-0.36
-0.31
-0.88
-0.84
-0.84
-0.67
-0.66
-0.65
-0.62
-0.50
-0.50
-0.33
-0.37
-0.13
-0.18
-0.08
-0.06
0.00
0.08
0. 18
0.40
0.42
0.62
0.33
1 .28
1.56
1.77
1.32
1.36



xt = ! £ , yki uk /S£, yki Equation 5.2

For Site 1 in Table 5.1a, we obtain x, = (1 X 7.31 + 4 X 4.38 + 7 X 6.31
+ 4 X 7.25 + 2 X 7.25)/(l + 4 + 7 + 4 + 2 ) = 112.5/18 = 6.25. In Table
5.1b, the species and sites are arranged in order of the scores obtained so far.
The new site scores are also printed vertically underneath. There is already some
diagonal structure, i.e. the occurrences of each species tend to come together
along the rows. We can improve upon this structure by calculating new species
scores from the site scores that we have just calculated, and so on.

A practical numerical problem with this technique is that, by taking averages,
the range of the scores gets smaller and smaller. For example, we started off
with a range of 19 (site scores from 1 to 20) and after one cycle the site scores
have a range of 14.36 - 6.25 = 8.11 (Table 5.1b). To avoid this, either the site
scores or the species scores must be rescaled. Here the site scores have been rescaled.
There are several ways of doing so. A simple way is to rescale to a range from
0 to 100 by giving the site with the lowest score the value 0 and the site with
the highest score the value 100 and by calculating values for the remaining sites
in proportion to their scores; in the example, the rescaled scores would be obtained
with the formula (*,. - 6.25)/0.0811.

We shall use another way in which the site scores are standardized to (weighted)

Table 5.2 Two-way weighted averaging algorithm of CA.

a: Iteration process

Step 1. Take arbitrary, but unequal, initial site scores (*;).
Step 2. Calculate new species scores (uk) by weighted averaging of the site scores (Equation 5.1).
Step 3. Calculate new site scores (x,) by weighted averaging of the species scores (Equation 5.2).
Step 4. For the first axis, go to Step 5. For second and higher axes, make the site scores (xt)

uncorrelated with the previous axes by the orthogonalization procedure described below.
Step 5. Standardize the site scores (JC,). See below for the standardization procedure.
Step 6. Stop on convergence, i.e. when the new site scores are sufficiently close to the site scores

of the previous cycle of the iteration; ELSE go to Step 2.

b: Orthogonalization procedure

Step 4.1. Denote the site scores of the previous axis by ft and the trial scores of the present
axis by *,-.

Step 4.2. Calculate v = ! £ , y+i *,/•/>'++
where y+i = I^Liyki

andj>++=X=i y+f
Step 4.3 Calculate JC, new = x, old - v / .
Step 4.4 Repeat Steps 4.1-4.3 for all previous axes.
c: Standardization procedure

Step 5.1 Calculate the centroid, z, of site scores (x,) z = L£, y+i Xjjy++.
Step 5.2 Calculate the dispersion of the site scores s2 = I-5L, y+i (x, - z)2/y++.
Step 5.3 Calculate */new = (*/>old - z)/s.
Note that, upon convergence, s equals the eigenvalue.
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mean 0 and variance 1 as described in Table 5.2c. If the site scores are so
standardized, the dispersion of the species scores can be written as

5 = I£L, yk+ uk
2/y++ Equation 5.3

where
yk+ is the total abundance of species k
y++ the overall total.

The dispersion will steadily increase in each iteration cycle until, after about 10
cycles, the dispersion approaches its maximum value. At the same time, the site
and species scores stabilize. The resulting scores have maximum dispersion and
thus constitute the first CA axis.

If we had started from a different set of initial site scores or from a set of
arbitrary species scores, the iteration process would still have resulted in the same
ordination axis. In Table 5.1c, the species and sites are rearranged in order of
their scores on the first CA axis and show a clear diagonal structure.

A second ordination axis can also be extracted from the species data. The
need for a second axis may be illustrated in Table 5.1c; Site 1 and Site 19 lie
close together along the first axis and yet differ a great deal in species composition.
This difference can be expressed on a second axis. The second axis is extracted
by the same iteration process, with one extra step in which the trial scores for
the second axis are made uncorrelated with the scores of the first axis. This can
be done by plotting in each cycle the trial site scores for the second axis against
the site scores of the first axis and fitting a straight line by a (weighted) least-
squares regression (the weights are y+i/y++). The residuals from this regression
(i.e. the vertical deviations from the fitted line: Figure 3.1) are the new trial scores.
They can be obtained more quickly by the orthogonalization procedure described
in Table 5.2b. The iteration process would lead to the first axis again without
the extra step. The intention is thus to extract information from the species data
in addition to the information extracted by the first axis. In Figure 5.4, the final
site scores of the second axis are plotted against those of the first axis. Site 1
and Site 19 lie far apart on the second axis, which reflects their difference in
species composition. A third axis can be derived in the same way by making
the scores uncorrelated with the scores of the first two axes, and so on. Table
5.2a summarizes the algorithm of two-way weighted averaging. A worked example
is given in Exercise 5.1 and its solution.

In mathematics, the ordination axes of CA are termed eigenvectors (a vector
is a set of values, commonly denoting a point in a multidimensional space and
'eigen' is German for 'self). If we carry out an extra iteration cycle, the scores
(values) remain the same, so the vector is transformed into itself, hence, the term
eigenvector. Each eigenvector has a corresponding eigenvalue, often denoted by
X (the term is explained in Exercise 5.1.3). The eigenvalue is actually equal to
the (maximized) dispersion of the species scores on the ordination axis, and is
thus a measure of importance of the ordination axis. The first ordination axis
has the largest eigenvalue (^,), the second axis the second largest eigenvalue (k2),
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Figure 5.4 CA ordination diagram of the Dune Meadow Data in Hill's scaling. In this
and the following ordination diagrams, the first axis is horizontal and the second axis
vertical; the sites are represented by crosses and labelled by their number in Table 5.1;
species names are abbreviated as in Table 0.1.

and so on. The eigenvalues of CA all lie between 0 and 1. Values over 0.5 often
denote a good separation of the species along the axis. For the Dune Meadow
Data, Xl = 0.53; X2 = 0.40; X3 = 0.26; X4 = 0.17. As X3 is small compared to
X, and X2, we ignore the third and higher numbered ordination axes, and expect
the first two ordination axes to display the biologically relevant information (Figure
5.4).

When preparing an ordination diagram, we plot the site scores and the species
scores of one ordination axis against those of another. Because ordination axes
differ in importance, one would wish the scores to be spread out most along
the most important axis. But our site scores do not do so, because we standardized
them to variance 1 for convenience in the algorithm (Table 5.2). An attractive
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standardization is obtained by requiring that the average width of the species
curves is the same for each axis. As is clear from Figure 5.3b, the width of the
curve for Species D is reflected in the spread among its presences along the axis.
Therefore, the average curve width along an axis can be estimated from the data.
For example, Hill (1979) proposed to calculate, for each species, the variance
of the scores of the sites containing the species and to take the (weighted) average
of the variances so obtained, i.e. Hill proposed to calculate

E* yk+ P i yki (*/ - Uk)2lyk+Vy++-

To equalize the average curve width among different axes, we must therefore
divide all scores of an axis by its average curve width (i.e. by the square root
of the value obtained above). This method of standardization is used in the computer
program DECORANA (Hill 1979a). Other than in Table 5.2, the program further
uses the convention that site scores are weighted averages of species scores; so
we must iterate Step 3 of our algorithm once more, before applying the stan-
dardization procedure just described. This scaling has already been used in
preparing Figure 5.4 and we shall refer to it as Hill's scaling. A short cut to
obtain Hill's scaling from the scores obtained from our algorithm is to divide
the site scores after convergence by y/(l - X)/X and the species scores by
yJX(\ - X). The scores so obtained are expressed in multiples of one standard
deviation (s.d.) and have the interpretation that sites that differ by 4 s.d. in score
tend to have few species in common (Figure 5.3b). This use of s.d. will be discussed
further in Subsection 5.2.4.

CA cannot be applied on data that contain negative values. So the data should
not be centred or standardized (Subsection 2.4.4). If the abundance data of each
species have a highly skew distribution with many small values and a few extremely
large values, we recommend transforming them by taking logarithms:
loge (yki + 1), as in Subsection 3.3.1. By doing so, we prevent a few high values
from unduly influencing the analysis. In CA, a species is implicitly weighted by
its relative total abundance yk+/y++ and, similarly, a site is weighted by y+i/y++.
If we want to give a particular species, for example, triple its weight, we must
multiply all its abundance values by 3. Sites can also be given greater or smaller
weight by multiplying their abundance values by constants (ter Braak 1987b).

5.2.3 Diagonal structures: properties and faults of correspondence analysis

Table 5.3a shows artificial data in which the occurrences of species across sites
appear rather chaotic and Table 5.3b shows the same data after arranging the
species and sites in order of their score on the first CA axis. The data are rearranged
into a perfectly diagonal table, also termed a two-way Petrie matrix. (A Petrie
matrix is an incidence matrix that has a block of consecutive ones in every row;
the matrix is two-way Petrie if the matrix also has a block of consecutive ones
in every column, the block in the first column starting in the first row and the
block of the last column ending in the last row.) For any table that permits
such a rearrangement, we can discover the correct order of species and sites from
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the scores of the first axis of CA. This property of CA can be generalized to
quantitative data (Gifi 1981) and to (one-way) Petrie matrices (Heiser 1981; 1986).
For two-way Petrie matrices with many species and sites and with about equal
numbers of occurrences per species and per site, the first eigenvalue is close
to 1; e.g. for Table 5.3, A,, = 0.87.

Note that CA does not reveal the diagonal structure if the ones and zeros
are interchanged. Their role is asymmetrical, as is clear from the reciprocal averaging
algorithm. The ones are important; the zeros are disregarded. Many ecologists
feel the same sort of asymmetry between presences and absences of species.

The ordination of Table 5.3 illustrates two 'faults' of CA (Figure 5.5). First,
the change in species composition between consecutive sites in Table 5.3, Column
b is constant (one species appears; one disappears) and one would therefore wish
that this constant change were reflected in equal distances between scores of
neighbouring sites along the first axis. But the site scores at the ends of the first
axis are closer together than those in the middle of the axis (Figure 5.5b). Secondly,
the species composition is explained perfectly by the ordering of the sites and
species along the first axis (Table 5.3, Column b) and the importance of the second
axis should therefore be zero. However X2 ~ 0-57 and the site scores on the
second axis show a quadratic relation with those on the first axis (Figure 5.5a).
This fault is termed the arch effect. The term 'horseshoe' is also in use but is
less appropriate, as the ends do not fold inwards in CA.

Table 5.3 CA applied to artificial data (- denotes absence). Column a: The table looks
chaotic. Column b: After rearrangement of species and sites in order of their scores on
the first CA axis (uk and JC,-), a two-way Petrie matrix appears: X{ = 0.87.

Column a

Species

A
B
C
D
E
F
G
H
I

Sites
1 2

1 -
1 -
1 1
- -
- 1
- 1
_ _
_ _

3

_
-
-
-
-
-
1
1
1

4

_
-
-
1
1
1
-
_
-

5

_
-
-
1
-
-
1
1
-

6

_
-
-
1
-
1
1
_
-

7

_
1
1
-
1
-
-
_
-

Column b

Species

A
B
C
E
F
D
G
H
I

Xi

Sites
1

1
1
1
_
-
-
_
_
-

1

4
0

7

_
1
1
1
-
-
_
_
-

1

0
8

2

_
-
1
1
1
-
_
_
-

0

6
0

4

_
-
_
1
1
1
_
_
-

0

0
0

6

_
-
-
-
1
1
1
_
-

0

6
0

5

_
-
-
-
-
1
1
1
-

1

0
8

3

_
-
-
-
-
-
1
1
1

1

4
0

-1.40
-1.24
-1.03
-0.56
0.00
0.56
1.03
1.24
1.40
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Figure 5.5 Ordination by CA of the two-way Petrie matrix of Table 5.3. a: Arch effect
in the ordination diagram (Hill's scaling; sites labelled as in Table 5.3; species not shown),
b: One-dimensional CA ordination (the first axis scores of Figure a, showing that sites
at the ends of the axis are closer together than sites near the middle of the axis, c: One-
dimensional DCA ordination, obtained by nonlinearly rescaling the first CA axis. The
sites would not show variation on the second axis of DCA.

Let us now give a qualitative explanation of the arch effect. Recall that the
first CA axis maximally separates the species curves by maximizing the dispersion
(Equation 5.3) and that the second CA axis also tries to do so but subject to
the constraint of being uncorrelated with the first axis (Subsection 5.2.1). If the
first axis fully explains the species data in the way of Figure 5.3b, then a possible
second axis is obtained by folding the first axis in the middle and bringing the
ends together (Figure 5.3c). This folded axis has no linear correlation with the
first axis. The axis so obtained separates the species curves, at least Species C
from Species B and D, and these from Species A and E, and is thus a strong
candidate for the second axis of CA. Commonly CA will modify this folded axis
somewhat, to maximize its dispersion, but the order of the site and species scores
on the second CA axis will essentially be the same as that of the folded axis.
Even if there is a true second underlying gradient, CA will not take it to be
the second axis if its dispersion is less than that of the modified folded first axis.
The intention in constructing the second CA axis is to express new information,
but CA does not succeed in doing so if the arch effect appears.

5.2.4 Detrended correspondence analysis (DCA)

Hill & Gauch (1980) developed detrended correspondence analysis (DCA) as
a heuristic modification of CA, designed to correct its two major 'faults': (1) that
the ends of the axes are often compressed relative to the axes middle; (2) that
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the second axis frequently shows a systematic, often quadratic relation with the
first axis (Figure 5.5). The major of these is the arch effect.

The arch effect is 'a mathematical artifact, corresponding to no real structure
in the data' (Hill & Gauch 1980). They eliminate it by 'detrending'. Detrending
is intended to ensure that, at any point along the first axis, the mean value of
the site scores on the subsequent axes is about zero. To this end, the first axis
is divided into a number of segments and within each segment the site scores
on Axis 2 are adjusted by subtracting their mean (Figure 5.6). In the computer
program DECOR AN A (Hill 1979a), running segments are used for this purpose.
This process of detrending is built into the two-way weighted averaging algorithm,
and replaces the usual orthogonalization procedure (Table 5.2). Subsequent axes
are derived similarly by detrending with respect to each of the existing axes.
Detrending applied to Table 5.3 gives a second eigenvalue of 0, as required.

The other fault of CA is that the site scores at the end of the first axis are
often closer together than those in the middle of the axis (Figure 5.5b). Through
this fault, the species curves tend to be narrower near the ends of the axis than
in the middle. Hill & Gauch (1980) remedied this fault by nonlinearly rescaling
the axis in such a way that the curve widths were practically equal. Hill & Gauch
(1980) based their method on the tolerances of Gaussian response curves for the
species, using the term standard deviation (s.d.) instead of tolerance. They noted
that the variance of the optima of species present at a site (the 'within-site variance')
is an estimate of the average squared tolerance of those species. Rescaling must
therefore equalize the within-site variances as nearly as possible. For rescaling,
the ordination axis is divided into small segments; the species ordination is expanded
in segments with sites with small within-site variance and contracted in segments
with sites with high within-site variance. Subsequently, the site scores are calculated
by taking weighted averages of the species scores and the scores of sites and
species are standardized such that the within-site variance equals 1. The tolerances
of the curves of species will therefore approach 1. Hill & Gauch (1980) further
define the length of the ordination axis to be the range of the site scores. This
length is expressed in multiples of the standard deviation, abbreviated as s.d.
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Figure 5.6 Method of detrending by segments (simplified). The crosses indicate site scores
before detrending; the dots are site scores after detrending. The dots are obtained by
subtracting, within each of the five segments, the mean of the trial scores of the second
axis (after Hill & Gauch 1980).
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The use of s.d. is attractive: a Gaussian response curve with tolerance 1 rises
and falls over an interval of about 4 s.d. (Figure 3.6). Because of the rescaling,
most species will about have this tolerance. Sites that differ 4 s.d. in scores can
therefore be expected to have no species in common. Rescaling of the CA axis
of Table 5.3 results in the desired equal spacing of the site scores (Figure 5.5c);
the length of the axis is 6 s.d.

DC A applied to the Dune Meadow Data gives, as always, the same first eigenvalue
(0.53) as CA and a lower second eigenvalue (0.29 compared to 0.40 in CA). The
lengths of the first two axes are estimated as 3.7 and 3.1 s.d., respectively. Because
the first axis length is close to 4 s.d., we predict that sites at opposite ends of
the first axis have hardly any species in common. This prediction can be verified
in Table 5.1c (the order of DC A scores on the first axis is identical to that of
CA); Site 17 and Site 16 have no species in common, but closer sites have one
or more species in common. The DCA ordination diagram (Figure 5.7) shows
the same overall pattern as the CA diagram of Figure 5.4. There are, however,
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Figure 5.7 DCA ordination diagram of the Dune Meadow Data. The scale marks are
in multiples of the standard deviation (s.d.).
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differences in details. The arch seen in Figure 5.4 is less conspicuous, the position
of Sites 17 and 19 is less aberrant. Further, Achillea millefolium is moved from
a position close to Sites 2, 5, 6, 7 and 10 to the bottom left of Figure 5.7 and
is then closest to Site 1; this move is unwanted, as this species is most abundant
in the former group of sites (Table 5.1).

In an extentive simulation study, Minchin (1987) found that DC A, as available
in the program DECORANA, can flatten out some of the variation associated
with one of the underlying gradients. He ascribed this loss of information to
an instability in either, or both, detrending and rescaling. Pielou (1984, p. 197)
warned that DCA is 'overzealous' in correcting the 'defects' in CA and that it
'may sometimes lead to the unwitting destruction of ecologically meaningful
information'.

DCA is popular among practical field ecologists-, presumably because it provides
an effective approximate solution to the ordination problem for a unimodal
response model in two or more dimensions - given that the data are reasonably
representative of sections of the major underlying environmental gradients. Two
modifications might increase its robustness with respect to the problems identified
by Minchin (1987). First, nonlinear rescaling aggravates these problems; since
the edge effect is not too serious, we advise against the routine use of nonlinear
rescaling. Second, the arch effect needs to be removed, but this can be done
by a more stable, less 'zealous' method of detrending, which was also briefly
mentioned by Hill & Gauch (1980): detrending-by-polynomials. The arch is caused
by the folding of the first axis (Figure 5.3c), so that the second CA axis is about
a quadratic function of the first axis, the third CA axis a cubic function of the
first axis, and so on (Hill 1974). The arch is therefore most simply removed by
requiring that the second axis is not only uncorrelated with the first axis (xt),
but also uncorrelated with its square (xz

2) and, to prevent more folding, its cube
(Xj3). In contrast with 'detrending-by-segments', the method of detrending-by-
polynomials removes only specific defects of CA that are now theoretically
understood. Detrending by polynomials can be incorporated into the two-way
weighted averaging algorithm (Table 5.2) by extending Step 4 such that the trial
scores are not only made uncorrelated with the previous axes, but also with
polynomials of previous axes. The computer program CANOCO (ter Braak 1987b)
allows detrending by up to fourth-order polynomials.

5.2.5 Joint plot of species and sites

An ordination diagram mirrors the species data (although often with some
distortion), so we can make inferences about the species data from the diagram.
With Hill's scaling (Subsection 5.2.2), site scores are weighted averages of the
species scores. Site points then lie in the ordination diagram at the centroid of
the points of species that occur in them. Sites that lie close to the point of a
species are therefore likely to have a high abundance of that species or, for
presence-absence data, are likely to contain that species. Also, in so far as CA
and DCA are a good approximation to fitting bell-shaped response surfaces to
the species data (Subsection 5.2.1 and Section 5.7), the species points are close
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to the optima of these surfaces; hence, the expected abundance or probability
of occurrence of a species decreases with distance from its position in the plot
(Figure 3.14).

Using these rules to interpret DCA diagrams, we predict as an example the
rank order of species abundance for three species from Figure 5.7 and compare
the order with the data in Table 5.1. The predicted rank order for Juncus bufonius
is Sites 12, 8, 13, 9, 18 and 4; in the data Juncus bufonius is present at four
sites, in order of abundance Sites 9, 12, 13 and 7. The predicted rank order for
Rumex acetosa is Sites 5, 7, 6, 10, 2 and 11; in the data R. acetosa occurs in
five sites, in order of abundance Sites 6, 5, 7, 9 and 12. Ranunculus flammula
is predicted to be most abundant at Sites 20, 14, 15, 16 and less abundant, if
present at all, at Sites 8, 12 and 13; in the data, R. flammula is present in six
sites, in order of abundance Sites 20, 14, 15, 16, 8 and 13. We see some agreement
between observations and predictions but also some disagreement. What is called
for is a measure of goodness of fit of the ordination diagram. Such a measure
is, however, not normally available in CA and DCA.

In interpreting ordination diagrams of CA and DCA, one should be aware
of the following aspects. Species points on the edge of the diagram are often
rare species, lying there either because they prefer extreme (environmental)
conditions or because their few occurrences by chance happen to be at sites with
extreme conditions. One can only decide between these two possibilities by
additional external knowledge. Such species have little influence on the analysis;
if one wants to enlarge the remainder of the diagram, it may be convenient not
to display them at all. Further, because of the shortcomings of the method of
weighted averaging, species at the centre of the diagram may either be unimodal
with optima at the centre, or bimodal, or unrelated to the ordination axes. Which
possibility is most likely can be decided upon by table rearrangement as in Table
5.1c or by plotting the abundance of a species against the axes. Species that
lie between the centre and the outer edge are most likely to show a clear relation
with the axes.

5.2.6 Block structures and sensitivity to rare species

CA has attractive properties in the search for block structures. A table is said
to have block structure if its sites and species can be divided into clusters, with
each cluster of species occurring in a single cluster of sites (Table 5.4). For any
table that allows such a clustering, CA will discover it without fail. With the
four blocks in Table 5.4, the first three eigenvalues of CA equal 1 and sites from
the same cluster have equal scores on the three corresponding axes. An eigenvalue
close to 1 can therefore point to an almost perfect block structure or to a diagonal
structure in the data (Subsection 5.2.3). The search for block structures or 'near-
block structures' by CA forms the basis of the cluster-analysis program TWINSPAN
(Chapter 6).

This property of CA is, however, a disadvantage in ordination. If a table contains
two disjoint blocks, one of which consists of a single species and a single site,
then the first axis of CA finds this questionably uninteresting block. For a similar
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Table 5.4 Data table with block structure. Outside the Sub-tables A1? A2, A3
and A4, there are no presences, so that there are four clusters of sites that
have no species in common (A,, = 1, X,2 — 1, X,3 = 1).

Sites

Species

A,

0

A2

0

A3

A4

reason, CA is sensitive to species that occur only in a few species-poor sites.
In the 'down-weighting' option of the program DECOR AN A (Hill 1979a), species
that occur in a few sites are given a low weight, so minimizing their influence,
but this does not fully cure CA's sensitivity to rare species at species-poor sites.

5.2.7 Gaussian ordination and its relation with CA and DCA

In the introduction to CA (Subsection 5.2.1), we assumed that species show
unimodal response curves to environmental variables, intuitively took the dispersion
of the species scores as a plausible measure of how well an environmental variable
explains the species data, and subsequently defined CA to be the technique that
constructs a theoretical variable that explains the species data best in the sense
of maximizing the dispersion. Because of the shortcomings of CA noted in the
subsequent sections, the dispersion of the species scores is not ideal to measure
the fit to the species data. We now take a similar approach but with a better
measure of fit and assume particular unimodal response curves. We will introduce
ordination techniques that are based on the maximum likelihood principle
(Subsections 3.3.2 and 4.2.1), in particular Gaussian ordination, which is a
theoretically sound but computationally demanding technique of ordination. We
also show that the simpler techniques of CA and DCA give about the same result
if particular additional conditions hold true. This subsection may now be skipped
at first reading; it requires a working knowledge of Chapters 3 and 4.
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One dimension

In maximum likelihood ordination, a particular response model (Subsection
3.1.2) is fitted to the species data by using the maximum likelihood principle.
In this approach, the fit is measured by the deviance (Subsection 3.3.2) between
the data and the fitted curves. Recall that the deviance is inversely related to
the likelihood, namely deviance = -2 loge (likelihood). If we fit Gaussian (logit)
curves (Figure 3.9) to the data, we obtain Gaussian ordination. In Subsection
3.3.3, we fitted a Gaussian logit curve of pH to the presence-absence data of
a particular species (Figure 3.10). In principle, we can fit a separate curve for
each species under consideration. A measure of how badly pH explains the species
data is then the deviance (Table 3.6) summed over all species. Gaussian ordination
of presence-absence data is then the technique that constructs the theoretical
variable that best explains the species data by Gaussian logit curves, i.e. that
minimizes the deviance between the data and the fitted curves.

A similar approach can be used for abundance data by fitting Gaussian curves
to the data, as in Section 3.4, with the assumption that the abundance data follow
a Poisson distribution. A Gaussian curve for a particular species has three
parameters: optimum, tolerance and maximum (Figure 3.6), for species k denoted
by uk9 tk and ck9 respectively. In line with Equation 3.8, the Gaussian curves
can now be written as

Eyki = ck exp [-0.5(jCi - uk)2/ tk
2] Equation 5.4

where x{ is the score of site / on the ordination axis (the value of the theoretical
variable at site i).

To fit this response model to data we can use an algorithm akin to that to obtain
the ordination axis in CA (Table 5.2).
Step 1: Start from initial site scores JC,.
Step 2: Calculate new species scores by (log-linear) regression of the species data

on the site scores (Section 3.4). For each species, we so obtain new values
for uk, tk and ck.

Step 3: Calculate new site scores by maximum likelihood calibration (Subsection
4.2.1).

Step 4: Standardize the site scores and check whether they have changed and,
if so, go back to Step 2, otherwise stop.

In this algorithm, the ordination problem is solved by solving the regression
problem (Chapter 3) and the calibration problem (Chapter 4) in an iterative fashion
so as to maximize the likelihood. In contrast to the algorithm for CA, this algorithm
may give different results for different initial site scores because of local maxima
in the likelihood function for Equation 5.4. It is therefore not guaranteed that
the algorithm actually leads to the (overall) maximum likelihood estimates; hence,
we must supply 'good' initial scores, which are also needed to reduce the
computational burden. Even for modern computers, the algorithm requires heavy
computation. In the following, we show that a good choice for initial scores are
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the scores obtained by CA.
The CA algorithm can be thought of a simplification of the maximum likelihood

algorithm. In CA, the regression and calibration problems are both solved by
weighted averaging. Recall that in CA the species score (uk) is a position on
the ordination axis x indicating the value most preferred by that particular species
(its optimum) and that the site score (JC,) is the position of that particular site
on the axis.

We saw in Section 3.7 that the optimum or score of a species (uk) can be
estimated efficiently by weighted averaging of site scores provided that (Figure
3.18b):
Al. the site scores are homogeneously distributed over the whole range of
occurrence of the species along the axis x.

In Section 4.3, we saw that the score (JC,) of a site is estimated efficiently by
weighted averaging of species optima provided the species packing model holds,
i.e. provided (Figure 4.1):
A2. the species' optima (scores) are homogeneously distributed over a large interval
around xt.
A3. the tolerances of species tk are equal (or at least independent of the optima,
ter Braak 1985).
A4. the maxima of species ck are equal (or at least independent of the optima;
ter Braak 1985).

Under these four conditions the scores obtained by CA approximate the
maximum likelihood estimates of the optima of species and the site values in
Gaussian ordination (ter Braak 1985). For presence-absence data, CA approx-
imates similarly the maximum likelihood estimates of the Gaussian logit model
(Subsection 3.3.3). CA does not, however, provide estimates for the maximum
and tolerance of a species.

A problem is that assumptions Al and A2 cannot be satisfied simultaneously
for all sites and species: the first assumption requires that the range of the species
optima is amply contained in the range of the site scores whereas the second
assumption requires the reverse. So CA scores show the edge effect of compression
of the end of the first axis relative to the axis middle (Subsection 5.2.3). In practice,
the ranges may coincide or may only partly overlap. CA does not give any clue
about which possibility is likely to be true. The algorithm in Table 5.2 results
in species scores that are weighted averages of the site scores and, consequently,
the range of the species scores is contained in the range of the site scores. But
it is equally valid mathematically to stop at Step 3 of the algorithm, so that
the site scores are weighted averages of the species scores and thus all lie within
the range of the species scores; this is done in the computer program DECORANA
(Hill 1979). The choice between these alternatives is arbitrary. It may help
interpretation of CA results to go one step further in the direction of the maximum
likelihood estimates by one regression step in which the data of each species are
regressed on the site scores of CA by using the Gaussian response model. This
can be done by methods discussed in Chapter 3. The result is new species scores
(optima) as well as estimates for the tolerances and maxima. As an example,
Figure 5.8 shows Gaussian response curves along the first CA axis fitted to the
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Figure 5.8 Gaussian response curves for some Dune Meadow species, fitted by log-linear
regression of the abundances of species (Table 5.1) on the first CA axis. The sites are
shown as small vertical lines below the horizontal axis.

Dune Meadow Data in Table 5.1. The curve of a particular species was obtained
by a log-linear regression (Section 3.4) of the data of the species on the site scores
of the first CA axis by using b0 + b{ x + b2 x2 in the linear predictor (Equation
3.18).

Two dimensions

In two dimensions, Gaussian ordination means fitting the bivariate Gaussian
surfaces (Figure 3.14)

ki = ck e x P (-0.5[(*n - uki)2 + (*/2 - «*2>2]/'*2) Equation 5.5

where
(uku uk2) are the coordinates of the optimum of species k in the ordination diagram
ck is the maximum of the surface
tk is the tolerance
(JC,-, , xi2) are the coordinates of site / in the diagram.

These Gaussian surfaces look like that of Figure 3.14, but have circular contours
because the tolerances are taken to be the same in both dimensions.

One cannot hope for more than that the two-axis solution of CA provides
an approximation to the fitting of Equation 5.5 if the sampling distribution of
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the abundance data is Poisson and if:
Al. site points are homogeneously distributed over a rectangular region in the
ordination diagram with sides that are long compared to the tolerances of the
species,
A2. optima of species are homogeneously distributed over the same region,
A3. the tolerances of species are equal (or at least independent of the optima),
A4. the maxima of species are equal (or at least independent of the optima).

However as soon as the sides of the rectangular region differ in length, the
arch effect (Subsection 5.2.3) crops up and the approximation is bad. Figure 5.9b
shows the site ordination diagram obtained by applying CA to artificial species
data (40 species and 50 sites) simulated from Equation 5.5 with ck — 5 and tk
= 1 for each k. The true site points were completely randomly distributed over
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- 4 . 0

Figure 5.9 CA applied to simulated species data, a: True configuration of sites (•). b:
Configuration of sites obtained by CA, showing the arch effect. The data were obtained
from the Gaussian model of Equation 5.5 with Poisson error, ck — 5, tk = 1 and optima
that were randomly distributed in the rectangle [-1,9] X [-0.5,4.5]. The vertical lines in
Figures a and b connect identical sites.
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a rectangular region with sides of 8 and 4 s.d. (Figure 5.9a). The CA ordination
diagram is dominated by the arch effect, although the actual position of sites
within the arch still reflects their position on the second axis in Figure 5.9a. The
configuration of site scores obtained by DCA was much closer to the true
configuration. DCA forcibly imposes Conditions Al, A2 and A3 upon the solution,
the first one by detrending and the second and third one by rescaling of the
axes.

We also may improve the ordination diagram of DCA by going one step further
in the direction of maximum likelihood ordination by one extra regression step.
We did so for the DCA ordination (Figure 5.7) of Dune Meadow Data in Table
0.1. For each species with more than 4 presences, we carried out a log-linear
regression of the data of the species on the first two DCA axes using the response
model

loge Eyki — b0 + blk xn + b3k xa + b4k (xn
2 + xi2

2) Equation 5.6

where xi{ and xa are the scores of site / on the DCA axes 1 and 2, respectively.

If bAk < 0, this model is equivalent to Equation 5.5 (as in Subsection 3.3.3).
The new species scores are then obtained from the estimated parameters in Equation
5.6 by ukj = -blkl(2b,k), uk2 = -b2l(2bik) and tk = 1/\/(-2b<k).

If bAk > 0, the fitted surface shows a minimum and we have just plotted the
DCA scores of the species. Figure 5.10a shows how the species points obtained
by DCA change by applying this regression method to the 20 species with four
or more presences. A notable feature is that Achillea millefolium moves towards
its position in the CA diagram (Figure 5.4). In Figure 5.10b, circles are drawn
with centres at the estimated species points and with radius tk. The circles are
contours where the expected abundance is 60% of the maximum expected
abundance ck. Note that exp (-0.5) = 0.60.

From Figure 5.10b, we see, for example, that Trifolium repens has a high tolerance
(a large circle, thus a wide ecological amplitude) whereas Bromus hordaceus has
a low tolerance (a small circle, thus a narrow ecological amplitude). With regression,
the joint plot of DCA can be interpreted with more confidence. This approach
also leads to a measure of goodness of fit. A convenient measure of goodness
of fit is here

V = 1 - ( I , Dkl)/ ( I , Dk0) Equation 5.7

where Dk0 and Dkl are the residual deviances of the A:th species for the null model
(the model without explanatory variables) and the model depicted in the diagram
(Equation 5.6), respectively. These deviances are obtained from the regressions
(as in Table 3.7). We propose to term V the fraction of deviance accounted for
by the diagram. For the two-axis ordination (only partially displayed in Figure
5.10b) V = (1 - 360/987) = 0.64. For comparison, V = 0.51 for the one-axis
ordination (partially displayed in Figure 5.8).
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Figure 5.10 Gaussian response surfaces for several Dune Meadow species fitted by log-
linear regression of the abundances of species on the site scores of the first two DCA
axes (Figure 5.7). a: Arrows for species running from their DCA scores (Figure 5.7) to
their fitted optimum, b: Optima and contours for some of the species. The contour indicates
where the abundance of a species is 60% of the abundance at its optimum.

The regression approach can of course be extended to more complicated surfaces
(e.g. Equation 3.24), but this will often be impractical, because these surfaces
are more difficult to represent graphically.

5.3 Principal components analysis (PCA)

5.3.1 From least-squares regression to principal components analysis

Principal components analysis (PCA) can be considered to be an extension
of fitting straight lines and planes by least-squares regression. We will introduce
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4-

Figure 5.10b

PCA, assuming the species data to be quantitative abundance values.
Suppose we want to explain the abundance values of several species by a

particular environmental variable, say moisture, and suppose we attempt to do
so by fitting straight lines to the data. Then, for each species, we have to carry
out a least-squares regression of its abundance values on the moisture values
and obtain, among other things, the residual sum of squares, i.e. the sum of
squared vertical distances between the observed abundance values and the fitted
line (Figure 3.1; Subsection 3.2.2). This is a measure of how badly moisture explains
the data of a single species. To measure how badly moisture explains the data
of all species, we now use the total of the separate residual sums of squares over
all species, abbreviated the total residual sum of squares. If the total residual
sum of squares is small, moisture can explain the species data well.

Now, suppose that, among a set of environmental variables, moisture is the
variable that best explains the species data in the sense of giving the least total
residual sum of squares. As in all ordination techniques, we now wish to construct
a theoretical variable that explains the species data still better. PCA is the ordination
technique that constructs the theoretical variable that minimizes the total residual
sum of squares after fitting straight lines to the species data. PCA does so by
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choosing best values for the sites, the site scores. This is illustrated in Figure
5.11 for the Dune Meadow Data. The site scores are indicated by ticks below
the horizontal axis. The fitted lines are shown for six of the 30 species and the
observed abundance values and residuals for one of them. Any other choice of
site scores would result in a larger sum of squared residuals. Note that Figure
5.11 shows only 20 out of all 20 X 30 = 600 residuals involved. The horizontal
axis in Figure 5.11 is the first PCA axis, or first principal component. The score
of a species in PCA is actually the slope of the line fitted for the species against
the PCA axis. A positive species score thus means that the abundance increases
along the axis (e.g. Agrostis stolonifera in Figure 5.11); a negative score means
that the abundance decreases along the axis (e.g Lolium perenne in Figure 5.11)
and a score near 0 that the abundance is poorly (linearly) related to the axis
(e.g. Sagina procumbens in Figure 5.11).

If a single variable cannot explain the species data sufficiently well, we may
attempt to explain the data with two variables by fitting planes (Subsection 3.5.2).
Then, for each species we have to carry out a least-squares regression of its
abundance values on two explanatory variables (Figure 3.11), obtain its residual
sum of squares and, by addition over species, the total residual sum of squares.
The first two axes of PCA are now the theoretical variables minimizing the total
residual sum of squares among all possible choices of two explanatory variables.
Analogously, the first three PCA axes minimize the total residual sum of squares
by fitting the data to hyperplanes, and so on. PCA is thus a multi-species extension
of multiple (least-squares) regression. The difference is that in multiple regression

- 0 . 4 '

Figure 5.11 Straight lines for several Dune Meadow species, fitted by PCA to the species
abundances of Table 5.1. Also shown are the abundances of Lolium perenne and their
deviations from the fitted straight line. The horizontal axis is the first principal component.
Fitting straight lines by least-squares regression of the abundances of species on the site
scores of the first PCA axis gives the same results. The slope equals the species score
of the first axis. The site scores are shown by small vertical lines below the horizontal
axis.
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the explanatory variables are supplied environmental variables whereas in PCA
the explanatory variable are theoretical variables estimated from the species data
alone. It can be shown (e.g. Rao 1973) that the same result as above is obtained
by defining the PCA axes sequentially as follows. The first PCA axis is the variable
that explains the species data best, and second and later axes also explain the
species data best but subject to the constraint of being uncorrelated with previous
PCA axes. In practice, we ignore higher numbered PCA axes that explain only
a small proportion of variance in the species data.

5.3.2 Two-way weighted summation algorithm

We now describe an algorithm that has much in common with that of CA
and that gives the ordination axes of PCA. The algorithm also shows PCA to
be a natural extension of straight-line regression.

If the relation between the abundance of a species and an environmental variable
is rectilinear, we can summarize the relation by the intercept and slope of a straight
line. The error part of the model is taken to consist of independent and normally
distributed errors with a constant variance. The parameters (intercept and slope)
are then estimated by least-squares regression of the species abundances on the
values of the environmental variable (Subsection 3.2.2). Conversely, when the
intercepts and slopes are known, we can estimate the value of the environmental
variable from the species abundances at a site by calibration (Subsection 4.2.3).
If it is not known in advance which environmental variable determines the
abundances of the species, the idea is as in CA (Subsection 5.2.2) to discover
the 'underlying environmental gradient' by applying straight-line regression and
calibration alternately in an iterative fashion, starting from arbitrary initial values
for sites or from arbitrary initial values for the intercepts and slopes of species.
As in CA, the iteration process eventually converges to a set of values for species
and sites that does not depend on the initial values.

The iteration process reduces to simple calculations when we first centre the
abundances of each species to mean 0 and standardize the site scores to x =
0 and I , (Xj - x)2 = 1. Then, the equations to estimate the intercept and the
slope of a straight line (Equations 3.6a,b) reduce to b0 = 0 and bx — I , yt xi9
because in the notation of Subsection 3.2.2 y = 0, x = 0 and X, (xt - x)2 —
1. Hence we ignore the intercepts and concentrate on the slope parameters. From
now on, bk will denote the slope parameter for species k and yki the centred
abundance of species k at site / (i.e. yk+ — 0). In this notation, the slope parameter
of species k is calculated by

bk = Xfl, y k i xt Equation 5.8

As an example, Table 5.5a shows the Dune Meadow Data used before with
an extra column of species means and, as arbitrary initial scores for the sites,
values obtained by standardizing the numbers 1 to 20 (bottom row). For Achillea
millefolium, the mean abundance is 0.80 and we obtain
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to Table 5.
o Species
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Table 5.5 Two-way weighted summation algorithm of PCA
applied to the Dune Meadow Data, a: The original data table
with at the bottom the initial site scores, b: The species and
sites rearranged in order of their scores obtained after one cycle
of two-way weighted summation, c: The species arranged in order
of their final scores (PCA scores).



Table 5.5b
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bl = (1 - 0.80) X (-0.37) + (3 - 0.80) X (-0.33) + (0 - 0.80) X (-0.29) + ...
+ (0-0.80) X (0.37) = -1.98.

From the slopes thus obtained (Table 5.5a, last column), we derive new site
scores by least-squares calibration (Equation 4.2 with ak — 0). The site scores
so obtained are proportional to

xi — ^k=\yki bk Equation 5.9

because the denominator of Equation 4.1 has the same value for each site. This
denominator is unimportant in PCA, because the next step in the algorithm is
to standardize the site scores, as shown in Table 5.6c. For Site 1 in Table 5.5a,
we get from Equation 5.9 the site score xx = (1 - 0.80) X (-1.98) + (0 - 2.40)
X (1.55) + (0 - 0.25) X (1.49) + ... + (0 - 0.50) X (2.29) = -0.19. Note that
the species mean abundance is subtracted each time from the abundance value.
In Table 5.5b, the species and sites are arranged in order of the scores obtained
so far, in which the slopes (bk) form the species scores. The abundance of the
species in the top row (Lolium perenne) has the tendency to decrease along the
row, whereas the abundance of the species in the bottom row ( Eleocharis palustris)
has the tendency to increase across the row. The next cycle of the iteration is
to calculate new species scores (bk), then new site scores, and so on. As in CA,
the scores stabilize after several iterations and the resulting scores (Table 5.5c)
constitute the first ordination axis of PCA. In Table 5.5c, the species and sites
are arranged in order of their scores on the first axis. Going from top row to
bottom row, we see first a decreasing trend in abundance across the columns
(e.g. for Lolium perenne), then hardly any trend (e.g. for Sagina procumbens)
and finally an increasing trend (e.g. for Agrostis stolonifera). A graphical display
of the trends has already been shown in Figure 5.11. The order of species in
Table 5.5c is quite different from the order in the table arranged by CA (Table
5.1c), but the difference in ordering of the sites is more subtle.

In the above iteration algorithm of PCA (Table 5.6), weighted sums (Equations
5.8 and 5.9) replace the weighted averages in CA (Table 5.2; Equations 5.1 and
5.2). For this analogy to hold, let us consider the data yki as weights (which
can be negative in PCA), so that the species scores are a weighted sum of the
site scores and, conversely, the site scores are a weighted sum of the species scores
(Table 5.6). The standard terminology used in mathematics is that xt is a linear
combination of the variables (species) and that bk is the loading of species k.

After the first axis, a second axis can be extracted as in CA, and so on. (There
is a subtle difference in the orthogonalization procedure, which need not concern
us here.) The axes are also eigenvectors to which correspond eigenvalues as in
CA (Subsection 5.2.2). The meaning of the eigenvalues in PCA is given below.
The axes are also termed principal components.

So PCA decomposes the observed values into fitted values and residuals
(Equations 3.1 and 3.2). In one dimension, we have the decomposition

yki = bk Xj + residual Equation 5.10
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Table 5.6 Two-way weighted summation algorithm of PC A.

a: Iteration process

Step 1. Take arbitrary initial site scores (JC,), not all equal to zero.
Step 2. Calculate new species scores (bk) by weighted summation of the site scores (Equation 5.8).
Step 3. Calculate new site scores (JC,) by weighted summation of the species scores (Equation 5.9).
Step 4. For the first axis go to Step 5. For second and higher axes, make the site scores (JC,)

uncorrelated with the previous axes by the orthogonalization procedure described below.
Step 5. Standardize the site scores (JC,). See below for the standardization procedure.
Step 6. Stop on convergence, i.e. when the new site scores are sufficiently close to the site scores

of the previous cycle of the iteration; ELSE go to Step 2.

b: Orthogonalization procedure

Step 4.1. Denote the site scores of the previous axis b y / and the trial scores of the present
axis by JC,.

Step 4.2. Calculate v = ££, JC,/.
Step 4.3 Calculate jc,new = jc,old - v/J.
Step 4.4 Repeat Steps 4.1-4.3 for all previous axes.

c: Standardization procedure

Step 5.1 Calculate the sum of squares of the site scores s2 = ! £ , JC,2.
Step 5.2 Calculate jc,new = xiiOiJs.
Note that, upon convergence, s equals the eigenvalue.

where yki is the (mean corrected) observed value and bk xt the fitted value.

As an example, the values fitted by the first PCA axis (Table 5.5c) for the
centred abundances of Agrostis stolonifera (b2 = 8.67) at Site 6 (x6 = -0.31)
and Site 16 (JC16 = 0.45) are: 8.67 X (-0.31) = -2.75 and 8.67 X 0.45 = 3.99,
respectively. Adding the mean value of A. stolonifera (2.40), we obtain the values
-0.35 and 6.39, respectively, which are close to the observed abundance values
of 0 and 7 at Site 6 and Site 16. In PCA, the sum of squared residuals in Equation
5.10 is minimized (Subsection 5.3.1). Analogously, one can say that PCA maximizes
the sum of squares of fitted values and the maximum is the eigenvalue of the
first axis. In two dimensions (Figure 5.12), we have the decomposition

yki = (bkl xn + bkl xi2) + residual Equation 5.11

where
bkl and bk2 are the scores of species k
xn and xa are the scores of site / on Axis 1 and Axis 2, respectively.

On the second axis, the score of A. stolonifera is 6.10 and the scores of Sites
6 and 16 are -0.17 and 0.033 (Figure 5.12), so that the fitted values become 8.67
X (-0.31) + 6.10 X (-0.17) = -3.72 and 8.67 X 0.45 + 6.10 X 0.033 = 4.10.
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Figure 5.12 PCA-ordination diagram of the Dune Meadow Data in covariance biplot scaling
with species represented by arrows. The b scale applies to species, the x scale to sites.
Species not represented in the diagram lie close to the origin (0,0).

The first two PCA axes thus give approximate abundance values of -3.72 + 2.40
= -1.3 and 4.10 + 2.40 = 6.5, slightly worse values than those obtained from
the first axis, but most of the remaining abundance values in the data table will
be approximated better with two axes than with a single axis. The sum of squares
of fitted values now equals X{+ X2. Further, the total sum of squares (£*£,- yk?)
equals the sum of all eigenvalues. (This equality means that we can reconstruct
the observed values exactly from the scores of species and sites on all eigenvectors
and the mean abundance values.) The fraction of variance accounted for (explained)
by the first two axes is therefore (k{ + >.2)/(sum of all eigenvalues). This measure
is the equivalent of R2 in Section 3.2. For the Dune Meadow Data, X{ = 471,
\2 = 344 and the total sum of squares = 1598. So the two-axes solution explains
(471 + 344)/1598 = 51% of the variance. The first axis actually explains 471/
1598 = 29% of the variance and the second axis 344/1598 = 22%.
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5.3.3 Best lines and planes in m-dimensional space

Here we present a geometric approach to PCA. In this approach, the aim of
PCA is seen as being to summarize multivariate data in a graphical way. The
approach is best illustrated with data on two species only. Figure 5.13a displays
the abundances of Species A and B at 25 sites in the form of a scatter diagram,
with axes labelled by the species names. The simplest summary of data is by
the mean abundances of A (25) and B (15). Knowing the means, we may shift
the axes to the centroid of the data points, i.e. to the point with the coordinates
(25,15), provided we remember that the origin (0,0) of the new coordinate system
is the point (25,15) in the old coordinate system. Next we draw a line through
the new origin in the direction of maximum variance in the plot. This line is
the first principal component (PCI), or first PCA axis, and perpendicularly we
draw PC2. Next we rotate the plot, so that PCI is horizontal (Figure 5.13b).
Figure 5.13b is an ordination diagram with arrows representing the species. These
arrows are the shifted and rotated axes of the species in the original diagram.
PC2 shows so much less variation than PCI that PC2 can possibly be neglected.
This is done in Figure 5.13c showing a one-dimensional ordination; the points
in Figure 5.13c were obtained from Figure 5.13b by drawing perpendicular lines
from each point on the horizontal axis (projection onto PCI). In this way, the
first coordinate of the points in Figure 5.13b is retained in Figure 5.13c; this
coordinate is the site score on PCI. The first coordinate of the arrows in Figure
5.13b is the species loading on PCI, which is also represented by an arrow in
Figure 5.13c. These arrows indicate the direction in which Species A and Species
B increase in abundance; hence Figure 5.13c still shows which sites have high
abundances of Species A and of Species B (those on the right side) and which
sites have low abundance (those on the left side).

The example is, of course, artificial. Usually there are many species (m ^ 3),
so that we need an ra-dimensional coordinate system, and we want to derive
a two-dimensional or three-dimensional ordination diagram. Yet the principle
remains the same: PCA searches for the direction of maximum variance; this
is PCI, the best line through the data points. It is the best line in the sense
that it minimizes the sum of squares of perpendicular distances between the data
points and the line (as is illustrated in Figure 5.13a for m — 2). So the first
component in Figure 5.13a is neither the regression line of Species B on Species
A nor that of Species A on Species B, because regression minimizes the sum
of squares of vertical distances (Figure 3.1). But, as we have seen in Subsection
5.3.1, PCA does give the best regression of Species A on PCI and of Species
B on PCI (Figure 5.11). After the first component, PCA seeks the direction of
maximum variance that is perpendicular onto the first axis; that is PC2, which
with PCI forms the best plane through the data points, and so on. In general,
the site scores are obtained by projecting each data point from the ra-dimensional
space onto the PCA axes and the species scores are obtained by projecting the
unit vectors: for the first species (1,0,0,...); for the second species (0,1,0,0,...), etc.,
onto the PCA axes (Figure 5.13).
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component, running through the centroid of the sites in the direction of the greatest variance
(at 34° of the axis of Species A), b: Rotated version of Figure a with the first principal
component horizontally, c: One-dimensional PCA ordination with species represented by
arrows. The scores are simply those of the first axis of b.
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5.3.4 Biplot of species and site scores

The scores obtained from a PCA for species and sites can be used to prepare
a biplot (Gabriel 1971). The biplot serves the same function as the joint plot
in CA (Subsection 5.2.5), but the rules to interpret the biplot are rather different.
We limit the discussion to the two-dimensional biplot as it is more difficult to
visualize three-dimensional or higher ones. The prefix 'bi' in biplot refers to the
joint representation of sites and species, and not to the dimension of the plot;
for example, Figure 5.13c shows a one-dimensional biplot.

The ranges of the scores for sites and for species (scores and loadings) in PCA
are often of a different order of magnitude. For example in Table 5.3c, the range
of the species scores is 17.9 whereas the range of the site scores is 0.8. A biplot
is therefore constructed most easily by drawing separate plots of sites and of
species on transparent paper, each one with its own scaling. In each of the plots,
the scale unit along the vertical axis must have the same physical length as the
scale unit along the horizontal axis, as in CA. A biplot is obtained by superimposing
the plots with the axes aligned. A biplot may therefore have different scale units
for the sites (x scale) and species (b scale). Figures 5.12 and 5.15 provide examples
for the Dune Meadow Data.

In Subsection 5.3.1, we showed that for each species PCA fits a straight line
in one dimension to the (centred) abundances of the species (Figure 5.11; Equation
5.10) and in two dimensions a plane with respect to the PCA axes (Figure 3.11;
Equation 5.11). The abundance of a species as fitted by PCA thus changes linearly
across the biplot. We represent the fitted planes in a biplot by arrows as shown
in Figure 5.12. The direction of the arrow indicates the direction of steepest ascent
of the plane, i.e. the direction in which the abundance of the corresponding species
increases most, and the length of the arrow equals the rate of change in that
direction. In the perpendicular direction, the fitted abundance is constant. The
arrows are obtained by drawing lines that join the species points to the origin,
the point with coordinates (0,0).

The fitted abundances of a species can be read from the biplot in very much
the same way as from a scatter diagram, i.e. by projecting each site onto the
axis of the species. (This is clear from Figure 5.13a.) The axis of a species in
a biplot is in general, however, not the horizontal axis or the vertical axis, as
in Figure 5.13a, but an oblique axis, the direction of which is given by the arrow
of the species. As an example of how to interpret Figure 5.12, some of the site
points are projected onto the axis of Agrostis stolonifera in Figure 5.14. Without
doing any calculations, we can see the ranking of the fitted abundances of A.
stolonifera among the sites from the order of the projection points of the sites
along the axis of that species. From Figure 5.14, we thus infer that the abundance
of A. stolonifera is highest at Site 16, second highest at Site 13, and so on to
Site 6, which has the lowest inferred abundance. The inferred ranking is not perfect
when compared with the observed ranking, but not bad either.

Another useful rule to interpret a biplot is that the fitted value is positive if
the projection point of a site lies, along the species' axis, on the same side of
the origin as the species point does, and negative if the origin lies between the
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X 20

Figure 5.14 Biplot interpretation of Figure 5.12 for Agrostis stolonifera. For explanation,
see text.

projection point and the species point. As we have centred the abundance data,
the fitted abundance is higher than the species mean in the former case and lower
than the species mean in the latter case. For example, Site 3 and Site 20 are
inferred to have a higher than average abundance of A. stolonifera, whereas Sites
2 and 19 are inferred to have a lower than average abundance of this species.
These inferences are correct, as can be seen from Table 5.5. One can also obtain
quantitative values for the abundances as represented in the biplot, either
algebraically with Equation 5.11 or geometrically as follows (ter Braak 1983).
For this, we need the distance of the species point from the origin. In Figure
5.12, we see from the b scale that A. stolonifera lies at a distance of about 10
from the origin. We need further the projection points of sites onto the species'
axis (Figure 5.14). From the x scale, we see that, for example, the projection
point of Site 20 lies a distance of about 0.2 from the origin. The fitted value
is now about 10 X 0.2 = 2. Adding the mean of A. stolonifera (2.4), we obtain
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4.4 as the fitted abundance for A. stolonifera at Site 20; the observed value is
5. This biplot accounts in this way for 51% of the variance in abundance values
of all species. This value was computed at the end of Subsection 5.3.2. Note,
however, that the fraction of variance accounted for usually differs among species.
In general, the abundances of species that are far from the origin are better
represented in the biplot than the abundances of species near the origin. For
example, the fractions accounted for are 80% for Agrostis stolonifera, 78% for
Poa trivialis, 25% for Bromus hordaceus, 4% for Brachythecium rutabulum and
3% for Empetrum nigrum.

The scaling of the species and site scores in the biplot requires attention. From
Equation 5.11, we deduce that scaling is rather arbitrary; for example, the fitted
values remain the same if we jointly plot the species points (3b kl, 5bk2) and the
site points (xn/3, xi2/5). Yet, there are two types of scaling that have special
appeal.

In the first type of scaling, the site scores are standardized to unit sum of
squares and the species scores are weighted sums of the site scores (Table 5.6).
The sum of squared scores of species is then equal to the eigenvalue of the axis.
In this scaling, the angle between arrows of each pair of species (Figure 5.12)
provides an approximation of their pair-wise correlation, i.e.

r « cos 0

with r the correlation coefficient and 6 the angle.

Consequently, arrows that point in the same direction indicate positively correlated
species, perpendicular arrows indicate lack of correlation and arrows pointing
in the opposite direction indicate negatively correlated species. This biplot is termed
the covariance biplot and is considered in detail by Corsten & Gabriel (1976).

In the second type of scaling, the species scores are standardized to unit sum
of squares and the site scores are standardized, so that their sum of squares equals
the eigenvalue of each axis. Then, the site scores are the weighted sum of the
species scores. This scaling was used implicitly in Subsection 5.3.3 and is intended
to preserve Euclidean Distances between sites (Equation 5.16), i.e. the length of
the line segment joining two sites in the biplot then approximates the length of
the line segment joining the sites in w-dimensional space, the axes of which are
formed by the species. When scaled in this way, the biplot is termed a Euclidean
Distance biplot (ter Braak 1983). Figure 5.15 shows this biplot for the Dune
Meadow Data.

The Euclidean Distance biplot is obtained from the covariance biplot by simple
rescaling of species and site scores. Species k with coordinates (bkhbk2) in the
covariance biplot gets the coordinates {bkll\J\x,bk2l V ^ ) m t n e Euclidean Distance
biplot, and site / with coordinates (xn,xa) gets coordinates (xiX\JXx,xi2\/X2) in
the Euclidean Distance biplot. Figure 5.15 does not look very different from Figure
5.12, because the ratio of v ^ i and V^-21S close to 1.
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Figure 5.15 Euclidean Distance biplot of Dune Meadow Data.

5.3.5 Data transformation

We have so far described the standard form of PCA as treated in statistical
textbooks (e.g. Morrison 1967). In ecology, this form is known as 'species-centred
PCA'. In a variant of this, 'standardized PCA', abundances of each species are
also divided by its standard deviation. In species-centred PCA, each species is
implicitly weighted by the variance of its abundance values. Species with high
variance, often the abundant ones, therefore dominate the PCA solution, whereas
species with low variance, often the rare ones, have only minor influence on the
solution. This may be reason to apply standardized PCA, in which all species
receive equal weight. However the rare species then unduly influence the analysis
if there are a lot of them, and chance can dominate the results. We therefore
recommend species-centred PCA, unless there is strong reason to use standardized
PCA. Standardization is necessary if we are analysing variables that are measured
in different units, for example quantitative environmental variables such as pH,
mass fraction of organic matter or ion concentrations. Noy Meir et al. (1975)
fully discuss the virtues and vices of various data transformations in PCA.

The fraction of variance accounted for by the first few axes is not a measure
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of the appropriateness of a particular data transformation. By multiplying the
abundances of a single species by a million, the first axis of a species-centred
PCA will in general account for nearly all the variance, just because nearly all
the variance after this transformation is due to this species and the first axis
almost perfectly represents its abundances.

If some environmental variables are known to influence the species data strongly,
the axes of a PCA will probably show what is already known. To detect unknown
variation, one can for each species first apply a regression on the known
environmental variables, collect the residuals from these regressions in a two-
way table and apply PCA to this table of residuals. This analysis is called partial
PCA and is standardly available in the computer program CANOCO (ter Braak
1987b). The analysis is particularly simple if, before sampling, groups of sites
are recognized. Then, the deviations of the group means should be analysed instead
of the deviations from the general mean. An example is the analysis of vegetation
change in permanent plots by Swaine & Greig-Smith (1980).

5.3.6 R-mode and Q-mode algorithms

The iteration algorithm in Table 5.6 is a general-purpose algorithm to extract
eigenvectors and eigenvalues from an m X n matrix Y with elements yki. The
algorithm is used in the computer program CANOCO (ter Braak 1987b) to obtain
the solution to species-centred PCA if the rows are centred and to standardized
PCA if the rows are standardized, but also to non-centred PCA (Noy Meir 1973)
if the data are neither centred nor standardized. However many computer programs
for PCA use other algorithms, most of which implicitly transform the data. Centring
by variables is done implicitly when PCA is carried out on the matrix of covariances
between the variables. Also, standardization by variables is implicit in an analysis
of the correlation matrix. The role of species in our discussion therefore corresponds
to the role of variables in a general-purpose computer program for PCA. The
rest of Subsection 5.3.6 may be skipped at a first reading.

Algorithms that are based on the covariance matrix or correlation matrix are
termed R-mode algorithms. More generally, R-mode algorithms extract eigen-
vectors from the species-by-species cross-product matrix A with elements

aki = ^iykiyii (k,l= l , . . . , m)

where, as before, yki is the data after transformation.

By contrast, Q-mode algorithms extract eigenvectors from the site-by-site cross-
product matrix C with elements

A particular Q-mode algorithm is obtained from Table 5.6 by inserting Equation
5.8 in Equation 5.9. In this way, Steps 2 and 3 are combined into a single step,
in which
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It can be shown that the eigenvalues of the Matrix A equal those of the Matrix
C, and further that the eigenvectors of C can be obtained from those of A by
applying Equation 5.9 to each eigenvector and, conversely, that the eigenvectors
of A can be obtained from those of C by applying Equation 5.8 to each eigenvector
of C. The terms R-mode and Q-mode therefore refer to different algorithms and
not to different methods. If the number of species is smaller than the number
of sites, R-mode algorithms are more efficient than Q-mode algorithms, and
conversely.

5.4 Interpretation of ordination with external data

Once data on species composition have been summarized in an ordination
diagram, the diagram is typically interpreted with help of external knowledge
on sites and species. Here we discuss methods that facilitate interpretation when
data on environmental variables are collected at different sites. Analogous methods
exist when there is external data on the species, for example growth form of
plant species or indicator values for environmental variables from previous studies
or from the literature (Table 5.7).

Simple interpretative aids include:
- writing the values of an environmental variable in the order of site scores

of an ordination axis below the arranged species data table (Table 5.7)
- writing the values of an environmental variable near the site points in the

ordination diagram (Figure 5.16)
- plotting the site scores of an ordination axis against the values of an

environmental variable (Figure 5.17)
- calculating (rank) correlation coefficients between each of the quantitative

environmental variables and each of the ordination axes (Table 5.8)
- calculating mean values and standard deviations of ordination scores for each

class of a nominal environmental variable (ANOVA, Subsection 3.2.1) and
plotting these in the ordination diagram (Figure 5.16).

An ordination technique that is suited for the species composition data extracts
theoretical environmental gradients from these data. We therefore expect straight
line (or at least monotonic) relations between ordination axes and quantitative
environmental variables that influence species. Correlation coefficients are therefore
often adequate summaries of scatter plots of environmental variables against
ordination axes.

Three of these simple interpretative aids are directed to the interpretation of
axes instead of to the interpretation of the diagram as a whole. But the ordination
axes do not have a special meaning. Interpretation of other directions in the
diagram is equally valid. A useful idea is to determine the direction in the diagram
that has maximum correlation with a particular environmental variable (Dargie
1984). For theyth environmental variable, zj9 that direction can be found by multiple
(least-squares) regression of Zj on the site scores of the first ordination axis (x{)
and the second ordination axis (x2), i.e. by estimating the parameters bx and
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Table 5.7 Values of environmental variables and Ellenberg's indicator values of species
written alongside the ordered data table of the Dune Meadow Data, in which species and
sites are arranged in order of their scores on the second DC A axis. Al: thickness of Al
horizon (cm), 9 meaning 9 cm or more; moisture: moistness in five classes from 1 = dry
to 5 = wet; use: type of agricultural use, 1 = hayfield, 2 = a mixture of pasture and
hayfield, 3 = pasture; manure: amount of manure applied in five classes from 0 = no
manure to 5 = heavy use of manure. The meadows are classified by type of management:
SF, standard farming; BF, biological farming; HF, hobby farming; NM, nature management;
F, R, N refer to Ellenberg's indicator values for moisture, acidity and nutrients, respectively.
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Table 5.8 Correlation coefficients (100 X r) of en-
vironmental variables with the first four DCA axes
for the Dune Meadow Data.

Variable

1 Al
2 moisture
3 use
4 manure
5 SF
6 BF
7 HF
8 NM

Eigenvalue

Axes

1

58
76
35

6
22

-28
-22

21

0.54

2

24
57

-21
-68
-29
-24
-26

73

0.29

3

7
7

-3
-7

5
39

-55
17

0.08

4

9
-7
-5

-64
-60
22

-14
56

0.05

4 t

BF .HF

NM

SF

x
0 3

X X

Figure 5.16 The amount of manure written on the DCA ordination of Figure 5.7. The
trend in the amount across the diagram is shown by an arrow, obtained by a multiple
regression of manure on the site scores of the DCA axes. Also shown are the mean scores
for the four types of management, which indicate, for example, that the nature reserves
(NM) tend to lie at the top of the diagram.
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Figure 5.17 Site scores of the second DCA axis plotted against the amount of manure.

b2 of the regression equation (as in Subsection 3.5.2)

Ezj = b0 + b{ xx + b2 x2 Equation 5.12

The direction of maximum correlation makes an angle of 0 with the first axis
where 0 = arctan (62/^i) a n d the maximum correlation equals the multiple
correlation coefficient (Subsection 3.2.1). This direction can be indicated in the
ordination diagram by an arrow running from the centroid of the plot, for instance
with coordinates (0,0), to the point with coordinates (bhb2), as illustrated for
manure in Figure 5.16. This is an application of the biplot idea; the environmental
variable is represented in the diagram by an arrow that points in the direction
of maximum change (Subsection 5.3.4). Several environmental variables can be
accommodated in this way in a single ordination diagram.

In Chapter 3, presence and abundance of a single species represented the response
variable to be explained by the environmental variables. By applying an ordination
technique to the abundances of many species, we have reduced many response
variables to a few ordination axes. It is therefore natural to consider the ordination
axes as new derived response variables and to attempt to explain each of them
by use of multiple regression analysis. For example, we can fit for the first axis
(x,) the response model

Ex, = c0 + cx z, + c2 z2 + ... + cq zq Equation 5.13

where z; is the y'th (out of q) environmental variables and cy is the corresponding
regression coefficient. The multiple correlation coefficient and the fraction of
variance accounted for by the regression (Subsection 3.2.1) indicate whether the
environmental variables are sufficient to predict the variation in species composition
that is represented by the first ordination axis. Table 5.9 shows an example.
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Table 5.9 Multiple regression of the first CA axis on four
environmental variables of the dune meadow data, which shows
that moisture contributes significantly to the explanation of the
first axis, whereas the other variables do not.

Term

constant
Al
moisture
use
manure

ANOVA table

Regression
Residual
Total

R2 = 0.75
*L,j=0.66

Parameter

co
C\
C2
C3

d.f.

4
15
19

s.s.

17.0
6.2

23.2

Estimate

-2.32
0.14
0.38
0.31

-0.00

m.s.

4.25
0.41
1.22

s.e.

0.50
0.08
0.09
0.22
0.12

F

10.6

-4.62
1.71
4.08
1.37

-0.01

There are good reasons not to include the environmental variables in the
ordination analysis itself, nor to reverse the procedure by applying ordination
to the environmental data first and by adding the species data afterwards: the
main variation in the environmental data is then sought, and this may well not
be the major variation in species composition. For example, if a single envir-
onmental variable is important for the species and many more variables are included
in the analysis, the first few axes of the environmental ordination mainly represent
the relations among the unimportant variables and the relation of the important
variable with the species' data would not be discovered. It is therefore better
to search for the largest variation in the species' data first and to find out afterwards
which of the environmental variables is influential

5.5 Canonical ordination

5.5.1 Introduction

Suppose we are interested in the effect on species composition of a particular
set of environmental variables. What can then be inferred from an indirect gradient
analysis (ordination followed by environmental gradient interpretation)? If the
ordination of the species data can be readily interpreted with these variables,
the environmental variables are apparently sufficient to explain the main variation
in the species' composition. But, if the environmental variables cannot explain
the main variation, they may still explain some of the remaining variation, which
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can be substantial, especially in large data sets. For example, a strong relation
of the environmental variables with the fifth ordination axis will go unnoticed,
when only four ordination axes are extracted, as in some of the computer programs
in common use. This limitation can only be overcome by canonical ordination.

Canonical ordination techniques are designed to detect the patterns of variation
in the species data that can be explained 'best' by the observed environmental
variables. The resulting ordination diagram expresses not only a pattern of variation
in species composition but also the main relations between the species and each
of the environmental variables. Canonical ordination thus combines aspects of
regular ordination with aspects of regression.

We introduce, consecutively, the canonical form of CA, the canonical form
of PCA (redundancy analysis) and two other linear canonical techniques, namely
canonical correlation analysis and canonical variate analysis. After introducing
these particular techniques, we discuss how to interpret canonical ordination axes
and the possible effect of data transformations.

5.5.2 Canonical correspondence analysis (CCA)

To introduce canonical correspondence analysis (CCA), we consider again the
artificial example by which we have introduced CA (Subsection 5.2.1). In this
example (reproduced in Figure 5.18a), five species each preferred a slightly different
moisture value. The species score was defined to be the value most preferred
and was calculated by averaging the moisture values of the sites in which the
species is present. Environmental variables were standardized to mean 0 and
variance 1 (Table 5.2c) and the dispersion of the species scores after standardization
was taken to express how well a variable explains the species data.

Now suppose, as before, that moisture is the best single variable among the
environmental variables measured. In Subsection 5.2.1, we proceeded by con-
structing the theoretical variable that best explains the species data and, in Section
5.4, we attempted to explain the variable so obtained by a combination of measured
environmental variables (Equation 5.13). But, as discussed in Subsection 5.5.1,
such attempts may fail, even if we measure environmental variables influencing
the species. So why not consider combinations of environmental variables from
the beginning? In the example, someone might suggest considering a combination
of moisture and phosphate, and Figure 5.18b actually shows that, after stan-
dardization, the combination (3 X moisture + 2 X phosphate) gives a larger
dispersion than moisture alone. So it can be worthwhile to consider not only
the environmental variables singly but also all possible linear combinations of
them, i.e. all weighted sums of the form

Xj = c0 + c, zu + c2 z2i + ... + cq zqi Equation 5.14

where
Zji is the value of environmental variable j at site /
Cj is the weight (not necessary positive) belonging to that variable
JC, is the value of the resulting compound environmental variable at site /.
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Figure 5.18 Artificial example of unimodal response curves of five species (A-E) with respect
to standardized environmental variables showing different degrees of separation of the species
curves, a: Moisture, b: Linear combination of moisture and phosphate, chosen a priori,
c: Best linear combination of environmental variables, chosen by CCA. Sites are shown
as dots, at y = 1 if Species D is present and at y - 0 if Species D is absent.

CCA is now the technique that selects the linear combination of environmental
variables that maximizes the dispersion of the species scores (Figure 5.18c; ter
Braak 1987a). In other words, CCA chooses the best weights (cy) for the
environmental variables. This gives the first CCA axis.

The second and further CCA axes also select linear combinations of envir-
onmental variables that maximize the dispersion of the species scores, but subject
to the constraint of being uncorrelated with previous CCA axes (Subsection 5.2.1).
As many axes can be extracted as there are environmental variables.

CA also maximizes the dispersion of the species scores, though irrespective
of any environmental variable; that is, CA assigns scores (x,) to sites such that
the dispersion is absolutely maximum (Subsection 5.2.1). CCA is therefore
'restricted correspondence analysis' in the sense that the site scores are restricted
to be a linear combination of measured environmental variables (Equation 5.14).
By incorporating this restriction in the two-way weighted averaging algorithm
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of CA (Table 5.2), we obtain an algorithm for CCA. More precisely, in each
iteration cycle, a multiple regression must be carried out of the site scores obtained
in Step 3 on the environmental variables (for technical reasons with y+i/y++ as
site weights). The fitted values of this regression are by definition a linear
combination of the environmental variables (Equation 5.14) and are thus the new
site scores to continue with in Step 4 of Table 5.2a. As in CA, the scores stabilize
after several iterations and the resulting scores constitute an ordination axis of
CCA. The corresponding eigenvalue actually equals the (maximized) dispersion
of the species scores along the axis. The eigenvalues in CCA are usually smaller
than those in CA because of the restrictions imposed on the site scores in CCA.

The parameters of the final regression in the iteration process are the best weights,
also called canonical coefficients, and the multiple correlation of this regression
is called the species-environment correlation. This is the correlation between the
site scores that are weighted averages of the species scores and the site scores
that are a linear combination of the environmental variables. The species-en-
vironment correlation is a measure of the association between species and
environment, but not an ideal one; axes with small eigenvalues may have
misleadingly high species-environment correlations. The importance of the as-
sociation is expressed better by the eigenvalue because the eigenvalue measures
how much variation in the species data is explained by the axis and, hence, by
the environmental variables.

CCA is restricted correspondence analysis but the restrictions become less strict
the more environmental variables are included in the analysis. If q ^ n - 1, then
there are actually no restrictions any more; CCA is then simply CA. The arch
effect may therefore crop up in CCA, as it does in CA (Gauch 1982). The method
of detrending (Hill & Gauch 1980) can be used to remove the arch and is available
in the computer program CANOCO (ter Braak 1987b). But in CCA, the arch
can be removed more elegantly by dropping superfluous environmental variables.
Variables that are highly correlated with the arched axis (often the second axis)
are most likely to be superfluous. So a CCA with the superfluous variables excluded
does not need detrending.

In Subsection 5.2.7, we saw that CA approximated the maximum likelihood
solution of Gaussian ordination when Conditions A1-A4 hold true. If we change
the Gaussian ordination model by stating that the site scores must be a linear
combination of the environmental variables, the maximum likelihood solution
of the model so obtained is again approximated by CCA when these conditions
hold true (ter Braak 1986a). The data on species composition are thus explained
by CCA through a Gaussian response model in which the explanatory variable
is a linear combination of the environmental variables. Furthermore, tests of real
data showed that CCA is extremely robust when these assumptions do not hold.
The vital assumption is that the response model is unimodal. For a simpler model
where relations are monotonic, the results can still be expected to be adequate
in a qualitative sense, but for more complex models the method breaks down.

As an example, we use the Dune Meadow Data, which concerns the impact
of agricultural use on vegetation in dune meadows on the Island of Terschelling
(the Netherlands). The data set consists of 20 releves, 30 plant species (Table
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0.1) and 5 environmental variables (Table 0.2), one of which is the nominal variable
'type of management' consisting of four classes. CCA can accommodate nominal
explanatory variables by defining dummy variables as in multiple regression
(Subsection 3.5.5). For instance, the dummy variable 'nature management' (Table
5.7) indicates that meadows received that type of management. The first eigenvalue
of CCA is somewhat lower than that of CA (0.46 compared to 0.54). Multiple
regression of the site scores of the first CA axis on the environmental variables,
as we proposed in Section 5.4, resulted in a multiple correlation of 0.87. If the
multiple regression is carried out within the iteration algorithm, as in CCA, the
multiple correlation increases to 0.96, which is the species-environment correlation.
The CCA scores for species and sites look similar to those of CA: not surprisingly,
since the multiple correlation obtained with CA is already high. We conclude
that, in this example, the measured environmental variables account for the main
variation in the species composition. This is true for the second axis also. The
second eigenvalue of CCA is 0.29, compared to 0.40 for CA and the second
species-environment correlation is 0.89, compared to a multiple correlation of
0.83 in CA. Table 5.10 shows the canonical coefficients that define the first two
axes and the correlations of the environmental variables with these axes. These
correlations are termed intra-set correlations to distinguish them from the inter-
set correlations, which are the correlations between the environmental variables
and the site scores that are derived from the species scores. (The inter-set correlation
is R times the intra-set correlation; R is the species-environment correlation of
the axis). From the correlations in Table 5.10, we infer that the first axis is a
moisture gradient and that the second axis is a manuring axis, separating the
meadows managed as a nature reserve from the standardly farmed meadows. This
can be seen also from the CCA ordination diagram (Figure 5.19a).

Table 5.10 Canonical correspondence analysis: canonical coef-
ficients (100 X c) and intra-set correlations (100 X r) of
environmental variables with the first two axes of CCA for
the Dune Meadow Data. The environmental variables were
standardized first to make the canonical coefficients of different
environmental variables comparable. The class SF of the
nominal variable 'type of management' was used as reference
class in the analysis (Subsection 3.5.5).

Variable

Al
moisture
use
manure
SF
BF
HF
NM

Coefficients
Axis 1

9
71
25
-7
-

-9
18
20

I Axis 2

-37
-29

5
-27

-
16
19
92

Correlations
Axis 1

57
93
21

-30
16

-37
-36
56

Axis2

-17
-14
-41
-79
-70

15
-12
76
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The species and sites are positioned as points in the CCA diagram as in CA
and their joint interpretation is also as in CA; sites with a high value of a species
tend to be close to the point for that species (Subsection 5.2.5). The environmental
variables are represented by arrows and can be interpreted in conjunction with
the species points as follows. Each arrow determines an axis in the diagram and
the species points must be projected onto this axis. As an example, the points
of a few species are projected on to the axis for manuring in Figure 5.19b. The
order of the projection points now corresponds approximately to the ranking
of the weighted averages of the species with respect to amount of manure. The
weighted average indicates the 'position' of a species curve along an environmental
variable (Figure 5.18a) and thus the projection point of a species also indicates
this position, though approximately. Thus Cirsium arvense, Alopecurus genicu-
latus, Elymus repens and Poa trivialis mainly occur in these data in the highly
manured meadows, Agrostis stolonifera and Trifolium repens in moderately
manured meadows and Ranunculus flammula and Anthoxanthum odoratum in
meadows with little manuring. One can interpret the other arrows in a similar
way. From Figure 5.19a, one can see at a glance which species occur mainly
in wetter conditions (those on the right of the diagram) and which prefer drier
conditions (those on the left of the diagram).

The joint plot of species points and environmental arrows is actually a biplot
that approximates the weighted averages of each of the species with respect to
each of the environmental variables. The rules for quantitative interpretation of
the CCA biplot are the same as for the PCA biplot described in Subsection 5.3.4.
In the diagram, the weighted averages are approximated as deviations from the
grand mean of each environmental variable; the grand mean is represented by
the origin (centroid) of the plot. A second useful rule to interpret the diagram
is therefore that the inferred weighted average is higher than average if the projection
point lies on the same side of the origin as the head of an arrow and is lower
than average if the origin lies between the projection point and the head of an
arrow. As in Subsection 5.3.2, a measure of goodness of fit is (kl + X2)/(sum
of all eigenvalues), which expresses the fraction of variance of the weighted averages
accounted for by the diagram. In the example, Figure 5.19a accounts for 65%
of the variance of the weighted averages. (The sum of all canonical eigenvalues
is 1.177.)

The positions of the heads of the arrows depend on the eigenvalues and on
the intra-set correlations. In Hill's scaling (Subsection 5.2.2), the coordinate of
the head of the arrow for an environmental variable on axis s is rjs
\J\S {\ - Xs), with rjs the intra-set correlation of environmental variable j with
axis s and Xs is the eigenvalue of axis s. The construction of biplots for detrended
canonical correspondence analysis is described by ter Braak (1986a). Environmental
variables with long arrows are more strongly correlated with the ordination axes
than those with short arrows, and therefore more closely related to the pattern
of variation in species composition shown in the ordination diagram.

Classes of nominal environmental variables can also be represented by arrows
(ter Braak 1986a). The projection of a species on such an arrow approximates
the fraction of the total abundance of that species that is achieved at sites of
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Figure 5.19 CCA of the Dune Meadow Data, a: Ordination diagram with environmental
variables represented by arrows. The c scale applies to environmental variables, the u scale
to species and sites. The types of management are also shown by closed squares at the
centroids of the meadows of the corresponding types of management, b: Inferred ranking
of the species along the variable amount of manure, based on the biplot interpretation
of Part a of this figure.

that class. However it is sometimes more natural to represent each class of a
nominal variable by a point at the centroid (the weighted average) of the sites
belonging to that class (Figure 5.19a). Classes consisting of sites with high values
for a species are then positioned close to the point of that species. In Figure
5.19a, the meadows managed as a nature reserve are seen to lie at the top-right
of the diagram; the meadows of standard farms lie at the bottom.

A second example (from ter Braak 1986a) concerns the presence or absence
of 133 macrophytic species in 125 freshwater ditches in the Netherlands. The
first four axes of detrended correspondence analyses (DCA) were poorly related
(multiple correlation R < 0.60) to the measured environmental variables, which
were: electrical conductivity (K), orthophosphate concentration (PHOSPHATE),
both transformed to logarithms, chloride ratio (CHLORIDE, the share of chloride
ions in K) and soil type (clay, peaty soil, sand). By choosing the axes in the
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light of these environmental variables by means of CCA, the multiple correlations
increased considerably, R being 0.82 and 0.81 for the first two axes. The eigenvalues
dropped somewhat - for the first two axes, from 0.34 and 0.25 in DCA to 0.20
and 0.13 in CCA. Apparently, the environmental variables are not sufficient to
predict the main variation in species composition extracted by DCA, but they
do predict a substantial part of the remaining variation. From the CCA ordination
diagram (Figure 5.20), it can be seen that K and PHOSPHATE are strongly
correlated ( > 0.8) with the first CCA axis. Species with a high positive score
on that axis are therefore almost restricted to ditches with high K and PHOS-
PHATE, and species with a large negative score to ditches with low K and
PHOSPHATE. Species with intermediate scores are either unaffected by K and
PHOSPHATE or restricted to intermediate values of K and PHOSPHATE. The
second CCA axis is strongly correlated (r = 0.9) with CHLORIDE. The arrow
for PEAT shows that species whose distribution is the most restricted to peaty
soils lie in the top-left corner of the diagram. The arrows for SAND and CLAY
are to be interpreted analogously.

143



• Meny trif

Nymp alba«
Ranu flam

Pote pal.
Ranu ling

peat

Schi gela

Pota acut

Pota per f . •

Call obti

Call hamu*

Ranu aqua

Pota c r i s

Vero anag*

phosphate

Cera subm

•Vero cate

• Tr ib bomb

•Bide t r i p

Pota dec»

Figure 5.20 CCA ordination diagram of the ditch vegetation data (sites are not shown).

5.5.3 Redundancy analysis (RDA)

Redundancy analysis (RDA) is the canonical form of PCA and was invented
by Rao (1964). RDA has so far been neglected by ecologists, but appears attractive
when used in combination with PCA.

As in PCA (Subsection 5.3.1), we attempt to explain the data of all species
by fitting a separate straight line to the data of each species. As a measure of
how badly a particular environmental variable explains the species data, we take
the total residual sum of squares, as in PCA (Figure 5.11). The best environmental
variable is then the one that gives the smallest total residual sum of squares.
From this, we can derive a canonical ordination technique, as in Subsection 5.5.2,
by considering also linear combinations of environmental variables. RDA is the
technique selecting the linear combination of environmental variables that gives
the smallest total residual sum of squares.

PCA also minimizes the total residual sum of squares, but it does so without
looking at the environmental variables (Subsection 5.3.1). We can obtain the RDA
axes by extending the algorithm of PCA (Table 5.6) in a similar fashion to how
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we modified the CA algorithm in Subsection 5.5.2; in each iteration cycle, the
site scores calculated in Step 3 are regressed on the environmental variables with
Equation 5.13 and the fitted values of the regression are taken as the new site
scores to continue in Step 4 of the algorithm. (In contrast to CCA, we must
now use equal site weights in the regression.) So the site scores are restricted
to a linear combination of the environmental variables and RDA is simply PCA
with a restriction on the site scores. The species-environment correlation is obtained
in the same way as for CCA; but, in RDA, this correlation equals the correlation
between the site scores that are weighted sums of the species scores and the site
scores that are a linear combination of the environmental variables.

We illustrate RDA with the Dune Meadow Data, using the same environmental
variables as in Subsection 5.5.2. The first two axes of PCA explained 29% and
21% of the total variance in the species data, respectively. RDA restricts the axes
to linear combinations of the environmental variables and the RDA axes explain
therefore less, namely 26% and 17% of the total variance. The first two spe-
cies-environment correlations are 0.95 and 0.89, both a little higher than the
multiple correlations resulting from regressing the first two PCA axes on the
environmental variables. We conclude, as with CCA, that the environmental
variables account for the main variation in the species composition. From the
canonical coefficients and intra-set correlations (Table 5.11), we draw the same
conclusions as with CCA, namely that the first axis is mainly a moisture gradient
and the second axis a manuring gradient.

The RDA ordination diagram (Figure 5.21) can be interpreted as a biplot
(Subsection 5.3.4). The species points and site points jointly approximate the species
abundance data as in PCA, and the species points and environmental arrows

Table 5.11 Redundancy analysis: canonical coefficients (100
X c) and intra-set correlations (100 X r) of environmental
variables with the first two axes of RDA for the Dune Meadow
Data. The environmental variables were standardized first to
make the canonical coefficients of different environmental
variables comparable. The class SF of the nominal variable
'type of management' was used as reference class in the analysis
(as in Table 5.10).

Variable

Al
moisture
use
manure
SF
BF
HF
NM

Coefficients

Axis 1

-1
15
5

-8
-

-10
-10

-4

Axis 2

_5
9

-6
16
-
0

-2
-13

Correlations

Axis 1

54
92
15

-26
25

-48
-40

51

Axis 2

-6
12
29
86
76

-11
13

-79
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Figure 5.21 RDA ordination diagram of the Dune Meadow Data with environmental
variables represented by arrows. The scale of the diagram is: 1 unit in the plot corresponds
to 1 unit for the sites, to 0.067 units for the species and to 0.4 units for the environmental
variables.

jointly approximate the covariances between species and environmental variables.
If species are represented by arrows as well (a natural representation in a PCA
biplot), the cosine of the angle between the arrows of a species and an environmental
variable is an approximation of the correlation coefficient between the species
and the environmental variable. One gets a qualitative idea of such correlations
from the plot by noting that arrows pointing in roughly the same direction indicate
a high positive correlation, that arrows crossing at right angles indicate near-
zero correlation, and that arrows pointing in roughly opposite directions indicate
a high negative correlation. If arrows are drawn for Poa trivialis, Elymus repens
and Cirsium arvense in Figure 5.21, they make sharp angles with the arrow for
manuring; hence, the abundances of these species are inferred to be positively
correlated with the amount of manure. We can be more confident about this
inference for Poa trivialis than for Cirsium arvense because the former species
lies much further from the centre of the diagram than the latter species. As in
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PCA, species at the centre of the diagram are often not very well represented
and inferences from the diagram about their abundances and correlations are
imprecise. From Figure 5.21, we infer also that, for instance, Salix repens,
Hypochaeris radicata and Air a praecox are negatively correlated with the amount
of manure.

A measure of goodness of fit of the biplot of species and environmental variables
is (\x + )i2)/(sum of all eigenvalues), which expresses the fraction of variance
of all covariances between species and environment accounted for by the diagram.
For the example, Figure 5.21 accounts for 71% of this variance.

The scaling of Figure 5.21 conforms to that of the Euclidean distance biplot
(Subsection 5.3.4): the sum of squares of the species scores is unity and site points
are obtained by weighted summation of species scores. The positions of the heads
of arrows of the environmental variables depend on the intra-set correlations (Table
5.11) and the eigenvalues. With this scaling, the coordinate of the head of the
arrow for an environmental variable on axis s must be rjs y(ks/ri) where rjs is
the intra-set correlation of environmental variable j with axis s, n is the number
of sites, and Xs the eigenvalue of axis s. The diagram scaled in this way gives
not only a least-squares approximation of the covariances between species and
environment, but also approximations of the (centred) abundances values, of the
Euclidean Distances among the sites as based on the species data (Equation 5.15),
and of covariances among the environmental variables, though the latter two
approximations are not least-squares approximations. Other types of scaling are
possible (ter Braak 1987b).

5.5.4 Canonical correlation analysis (COR)

The species-environment correlation was a by-product in CCA and RDA, but
is central in canonical correlation analysis (COR). The idea of COR is to choose
coefficients (scores) for species and coefficients for environmental variables so
as to maximize the species-environment correlation. In COR, the species-envir-
onment correlation is defined as in RDA, as the correlation between site scores
(xf) that are weighted sums of species scores: (x(* = I.k bk yki) and site scores
(*,-) that are a linear combination of the environmental variables (*, = c0 +
I ; Cj Zji). An algorithm to obtain the COR axes is given in Table 5.12. The resulting
species-environment correlation is termed the canonical correlation, and is actually
the squareroot of the first eigenvalue of COR. Step 2 of the algorithm makes
the difference from RDA: in RDA, the species scores are simply a weighted sum
of the site scores, whereas in COR the species scores are parameters estimated
by a multiple regression of the site scores on the species variables. This regression
has the practical consequence that, in COR, the number of species must be smaller
than the number of sites. It can be shown that the restriction on the number
of species is even stronger than that: the number of species plus the number
of environmental variables must be smaller than the number of sites. This
requirement is not met in our Dune Meadow Data and is generally a nuisance
in ecological research. By contrast, RDA and CCA set no upper limit to the
number of species that can be analysed. Examples of COR can be found in Gittins
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Table 5.12 An iteration algorithm for canonical correlation analysis (COR).

Step 1. Start with arbitrary initial site scores (*,), not all equal to zero.
Step 2. Calculate species scores by multiple regression of the site scores on the species variables.

The species scores (bk) are the parameter estimates of this regression.
Step 3. Calculate new site scores (x*) by weighted summation of the species scores (Equation 5.9).

The site scores in fact equal the fitted values of the multiple regression of Step 2.
Step 4. Calculate coefficients for the environmental variables by multiple regression of the site

scores (x*) on the environmental variables. The coefficients {cj) are the parameter estimates
of this regression.

Step 5. Calculate new site scores (x,) by weighted summation of the coefficients of the environmental
variables, i.e. by xt = I,jL\ Cj zir The site scores in fact equal the fitted values of the multiple
regression of Step 4.

Step 6. For second and higher axes, orthogonalize the site scores (JC,) as in Table 5.6.
Step 7. Standardize the site scores (x,) as in Table 5.6.
Step 8. Stop on convergence, i.e. when the new site scores are sufficiently close to the site scores

of the previous cycle of the iteration process; ELSE go to Step 2.

(1985). COR allows a biplot to be made, from which the approximate covariances
between species and environmental variables can be derived in the same way as
in RDA (Subsection 5.5.3). The construction of the COR biplot is given in
Subsection 5.9.3.

In our introduction to COR, species and environmental variables enter the analysis
in a symmetric way (Table 5.12). Tso (1981) presented an asymmetric approach
in which the environmental variables explain the species data. In this approach
COR is very similar to RDA, but differs from it in the assumptions about the
error part of the model (Equations 5.10 and 5.14): uncorrelated errors with equal
variance in RDA and correlated normal errors in COR. The residual correlations
between errors are therefore additional parameters in COR. When the number
of species is large, there are so many of them that they cannot be estimated reliably
from data from few sites. This causes practical problems with COR that are absent
in RDA and CCA.

5.5.5 Canonical variate analysis (CVA)

Canonical variate analysis (CVA) belongs to the classical linear multivariate
techniques along with PCA and COR. CVA is also termed linear discriminant
analysis.

If sites are classified into classes or clusters, we may wish to know how the
species composition differs among sites of different classes. If we have recorded
the abundance values of a single species only, this question reduces to how much
the abundance of the species differs between classes, a question studied in Subsection
3.2.1 by analysis of variance. If there are more species, we may wish to combine
the abundance values of the species to make the differences between classes clearer
than is possible on the basis of the abundance values of a single species. CVA
does so by seeking a weighted sum of the species abundances; however not one

148



that maximizes the total variance along the first ordination axis, as PCA does,
but one that maximizes the ratio of the between-class sum of squares and the
within-class sum of squares of the site scores along the first ordination axis. (These
sums of squares are the regression sum of squares and residual sum of squares,
respectively, in an ANOVA of the site scores, cf. Subsection 3.2.1.).

Formally, CVA is a special case of COR in which the set of environmental
variables consists of a single nominal variable defining the classes. So from
Subsection 3.5.5, the algorithm of Table 5.12 can be used to obtain the CVA
axes. We deduce that use of CVA makes sense only if the number of sites is
much greater than the number of species and the number of classes (Schaafsma
& van Vark 1979; Varmuza 1980). Consequently, many ecological data sets cannot
be analysed by CVA without dropping many species. Examples of CVA can be
found in Green (1979), Pielou (1984) and Gittins (1985).

In contrast to CVA, CCA and RDA can be used to display differences in species
composition between classes without having to drop species from the analysis.
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Figure 5.22 CCA ordination diagram of the Dune Meadow Data optimally displaying
differences in species composition among different types of management.
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For this, we must code classes as dummy environmental variables, as in Subsection
3.5.5. Such an analysis by CCA is equivalent to the analysis of concentration
proposed by Feoli & Orloci (1979). As an example, Figure 5.22 displays the
differences in vegetation composition between the meadows receiving different
types of management in our Dune Meadow Data. The first axis (A,, = 0.32) is
seen to separate the meadows receiving nature management from the remaining
meadows and second axis (k2 = 0.18) separates the meadows managed by standard
farming from those managed by hobby farming and biological farming, although
the separations are not perfect. The species displayed on the right side of the
diagram occur mainly in the meadows receiving nature management and those
on the upper left in the meadows managed by standard farming, and so on. Figure
5.22 displays almost the same information as Figure 5.19a, as can be seen by
joining Site Points 16 and 18 in both diagrams. Moisture and manuring are
presumably the major factors bringing about vegetation differences between types
of management.

5.5.6 Interpreting canonical axes

To interpret the ordination axes, one can use the canonical coefficients and
the intra-set correlations. The canonical coefficients define the ordination axes
as linear combinations of the environmental variables by means of Equation 5.14
and the intra-set correlations are the correlation coefficients between the envir-
onmental variables and these ordination axes. As before, we assume that the
environmental variables have been standardized to a mean of 0 and a variance
of 1 before the analysis. This standardization removes arbitrariness in the units
of measurement of the environmental variables and makes the canonical coefficients
comparable among each other, but does not influence other aspects of the analysis.

By looking at the signs and relative magnitudes of the intra-set correlations
and of the canonical coefficients standardized in this way, we may infer the relative
importance of each environmental variable for prediction of species composition.
The canonical coefficients give the same information as the intra-set correlations,
if the environmental variables are mutually uncorrelated, but may provide rather
different information if the environmental variables are correlated among one
another, as they usually are in field data. Both a canonical coefficient and an
intra-set correlation relate to the rate of change in species composition by changing
the corresponding environmental variable. However it is assumed that other
environmental variables are being held constant in the former case, whereas the
other environmental variables are assumed to covary with that one environmental
variable in the particular way they do in the data set in the latter case. If the
environmental variables are strongly correlated with one another, for example
simply because the number of environmental variables approaches the number
of sites, the effects of different environmental variables on the species composition
cannot be singled out and, consequently, the canonical coefficients will be unstable.
This is the multicollinearity problem discussed in the context of multiple regression
in Subsection 3.5.3. The algorithms to obtain the canonical axes show that canonical
coefficients are actually coefficients of a multiple regression (Subsection 5.5.2),
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so both suffer identical problems. If the multicollinearity problem arises (the
program CANOCO (ter Braak 1987b) provides statistics to help detecting it),
one should abstain from attempts to interpret the canonical coefficients. But the
intra-set correlations do not suffer from this problem. They are more like simple
correlation coefficients. They can still be interpreted. One can also remove
environmental variables from the analysis, keeping at least one variable per set
of strongly correlated environmental variables. Then, the eigenvalues and spe-
cies-environment correlations will usually only decrease slightly. If the eigenvalues
and species-environment correlations drop considerably, one has removed too
many (or the wrong) variables.

Their algorithms indicate that COR and CVA are hampered also by strong
correlations among species, whereas CCA and RDA are not. So in CCA and
RDA, the number of species is allowed to exceed the number of sites.

5.5.7 Data transformation

As in CA and PCA, any kind of transformation of the species abundances
may affect the results of CCA and RDA. We refer to Subsections 5.2.2 and 5.3.5
for recommendations about this. The results of COR and CVA are affected by
non-linear transformations of the species data, but not by linear transformations.
Canonical ordination techniques are not influenced by linear transformations of
the environmental variables, but non-linear transformation of environmental
variables can be considered if there is some reason to do so. Prior knowledge
about the possible impact of the environmental variables on species composition
may suggest particular non-linear transformations and particular non-linear
combinations, i.e. environmental scalars in the sense of Loucks (1962) and Austin
et al. (1984). The use of environmental scalars can also circumvent the multi-
collinearity problem described in Subsection 5.5.6.

5.6 Multidimensional scaling

In Section 5.1, ordination was defined as a method that arranges site points
in the best possible way in a continuum such that points that are close together
correspond to sites that are similar in species composition, and points which are
far apart correspond to sites that are dissimilar. A particular ordination technique
is obtained by further specifying what 'similar' means and what 'best' is. The
definition suggests that we choose a measure of (dis)similarity between sites
(Subsection 6.2.2), replace the original species composition data by a matrix of
dissimilarity values between sites and work further from the dissimilarity matrix
to obtain an ordination diagram. This final step is termed multidimensional scaling.

In general, it is not possible to arrange sites such that the mutual distances
between the sites in the ordination diagram are equal to the calculated dissimilarity
values. Therefore a measure is needed that expresses in a single number how
well or how badly the distances in the ordination diagram correspond to the
dissimilarity values. Such a measure is termed a loss function or a stress function.
In metric ordination techniques such as CA and PCA, the loss function depends
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on the actual numerical values of the dissimilarities, whereas, in non-metric
techniques, the loss function depends only on the rank order of the dissimilarities.

In CA and PCA, one need not calculate a matrix of dissimilarity values first,
yet those techniques use particular measures of dissimilarity. In CA, the implied
measure of dissimilarity is the chi-squared distance and, in PCA, the Euclidean
Distance, as follows immediately from Subsection 5.3.3. The chi-square distance
d^ between site / and site j is defined as

5 / = y++ I^xiyuly+i - ykjly+j)2 lyk+ Equation 5.15

and the Euclidean Distance 5,y between these sites is

V = S*=> Ofc - V 2 Equation 5.16

The chi-squared distance involves proportional differences in abundances of species
between sites, whereas the Euclidean Distance involves absolute differences.
Differences in site and species totals are therefore less influential in CA than
in PCA, unless a data transformation is used in PCA to correct for this effect.

A simple metric technique for multidimensional scaling is principal coordinate
analysis (PCO), also called classical scaling (Gower 1966; Pielou 1977, p.290-
395). PCO is based on PCA, but is more general than PCA, in that other measures
of dissimilarity may be used than Euclidean Distance. In PCO, the dissimilarity
values by are transformed into similarity values by the equation

ctj
= -0.5 (5? - %/n - b2

+jln + 52
++/«2) Equation 5.17

where the index + denotes a sum of squared dissimilarities. The matrix with
elements ctj is then subjected to the Q-mode algorithm of PCA (Subsection 5.3.6).
If the original dissimilarities were computed as Euclidean Distances, PCO is
identical to species-centred PCA calculated by the Q-mode algorithm.

In most techniques for (non-metric) multidimensional scaling, we must specify
a priori the number of ordination axes and supply an initial ordination of sites.
The technique then attempts to modify the ordination iteratively to minimize
the stress. In contrast to the iterative algorithms for CA, PCA and PCO, different
initial ordinations may lead to different results, because of local minima in the
stress function (Subsection 5.2.7); hence, we must supply a 'good' initial ordination
or try a series of initial ordinations. From such trials, we then select the ordination
with minimum stress.

The best known technique for non-metric multidimensional scaling is ascribed
to Shepard (1962) and Kruskal (1964). The stress function, which is minimized
in their technique, is based on the Shepard diagram. This is a scatter diagram
of the dissimilarities (5,y) calculated from the species data against the distances
dy between the sites in the ordination diagram.

The ordination fits perfectly (stress = 0), if the dissimilarities are monotonic
with the distances, i.e. if the points in the Shepard plot lie on a monotonically
increasing curve. If they do not, we can fit a monotonic curve through the points
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by least-squares. This is called monotonic or isotonic regression (Barlow et al.
1972). We then use as stress, a function of the residual sum of squares (for example,
Kruskal's stress formula 1, which is the residual sum of squares divided by the
total sum of squared distances). The algorithm to seek the ordination that minimizes
the stress proceeds further as described above. Note that the method can work
equally well with similarities, the only modifications being that a monotonically
decreasing curve is fitted in the Shepard diagram. There are two methods to deal
with equal dissimilarity values (ties). In the primary approach to ties, the
corresponding fitted distances need not be equal, whereas they must be equal
in the secondary approach. The primary approach to ties is recommended, because
equal dissimilarity values do not necessarily imply equal habitat differences, in
part*cular if the equalities arise between pairs of sites that have no species in
common (Prentice 1977).

The Shepard-Kruskal method is based on the rank order of all dissimilarities.
But calculated dissimilarities may not be comparable in different parts of a gradient,
for example if there is a trend in species richness. This potential problem can
be overcome by making a separate Shepard diagram for each site, in which we
plot the dissimilarities and distances between the particular site and all remaining
sites. Each Shepard diagram the distances leads to a stress value and the total
stress is taken to be a combination of the separate stress values. This is the local
non-metric technique proposed by Sibson (1972). Prentice (1977; 1980) advocated
a particular similarity coefficient for use in Sibson's technique. This coefficient is

stj — Ij. minO^,,^) Equation 5.18

Kendall (1971) proved that this coefficient contains all the information required
to reconstruct the order of sites when abundances of species follow arbitrary
unimodal response curves.

5.7 Evaluation of direct gradient and indirect gradient analysis techniques

Table 5.13 summarizes the techniques described in Chapters 3, 4 and 5 by type
of response model and types of variables. We can classify response models as
linear and non-linear. Each linear technique (from multiple regression to COR)
has non-linear counterparts. A non-linear model that has special relevance in
community ecology is the unimodal model. In principle, unimodal models can
be fitted to data by the general methods used for non-linear models (in particular
by maximum likelihood methods). For regression analysis, these methods are
available (GLM, Chapter 3) but, in ordination, they are not so readily available
and tend to require excessive computing. Therefore we have also introduced much
simpler methods for analysing data for which unimodal models are appropriate.
These simple methods start from the idea that the optima of species response
curves can be estimated roughly by weighted averaging and we have shown (Section
3.7) that under particular conditions the estimates are actually quite good. This
idea resulted in CA, DCA and CCA.

Multidimensional scaling is left out of Table 5.13, because it is unclear what
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Table 5.13 Summary of gradient analysis techniques classified by type of response model
and types of variables involved. MR, normal multiple regression; IR, inverse regression;
PCA, principal components analysis; RDA, redundancy analysis; COR, canonical correlation
analysis; WAE, weighted averaging of environmental values; GLM, generalized linear
modelling; ML, maximum likelihood; WAI, weighted averaging of indicator values; CA,
correspondence analysis; DCA, detrended correspondence analysis; CCA, canonical cor-
respondence analysis; DCCA, detrended canonical correspondence analysis; env.vars, en-
vironmental variables; comp. gradients, composite gradients of environmental variables, either
measured or theoretical.

Regression
Calibration
Ordination
Canonical
ordination

Response model

linear

MR
IR
PCA
RDA

COR

unimodal

WAE, GLM, ML
WAI, ML
CA, DCA, ML
CCA, DCCA,

ML
variants

of CCA,ML

Number of variables

response
(species)

explanatory
(env. vars)

one at a time ^ 1 *
>\*
many
many

many*

rarely >1
none
many*

many*

composite
(comp.gradients)

one per species
none
a few for all species
a few for all species

a few

* less than number of sites, except for WAE, WAI and some applications of ML.

response models multidimensional scaling can cope with. Whether (non-metric)
multidimensional scaling may detect a particular underlying data structure depends
in an unknown way on the chosen dissimilarity coefficient and on the initial
ordinations supplied. Non-metric multidimensional scaling could sometimes give
better ordinations than DCA does, but the question is whether the improvements
are worth the extra effort in computing power and manpower (Clymo 1980; Gauch
etal. 1981).

Unimodal models are more general than monotonic ones (Figure 3.3), so it
makes sense to start by using unimodal models and to decide afterwards whether
one could simplify the model to a monotonic one. Statistical tests can help in
this decision (Subsection 3.2.3). In ordination, we might therefore start by using
CA, DCA or CCA. This initial analysis will provide a check on how unimodal
the data are. If the lengths of the ordination axes are less than about 2 s.d.,
most of the response curves (or surfaces) will be monotonic, and we can consider
using PCA or RDA. The advantage of using PCA and RDA is that in their
biplot they provide more quantitative information than CA, DCA and (D)CCA
in their joint plot, but this advantage would be outweighed by disadvantages
when the data are strongly non-linear (ordination lengths greater than about 4
s.d.).

As illustrated by the Dune Meadow Data whose ordination lengths are about
3 s.d., DCA and PCA may result in similar configurations of site points (Figures
5.7 and 5.15). That they result in dissimilar configurations of species points, even
if the ordination lengths are small, is simply due to the difference in meaning
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of the species scores in DCA and PCA (Subsections 5.2.5 and 5.3.5).
Table 5.13 also shows the types of variables involved in regression, calibration,

ordination and canonical ordination. We distinguish between response variables,
explanatory variables and 'composite' variables, which in community ecology
typically correspond to species presences or abundances, measured environmental
variables and 'composite gradients', respectively. A composite gradient is either
a linear combination of measured environmental variables or a theoretical variable.
Which technique is the appropriate one to use largely depends on the research
purpose and the type of data available. Ordination and cluster analysis (Chapter
6) are the only available techniques when one has no measured environmental
data. Calibration must be considered if one wants to make inferences about values
of a particular environmental variable from species data and existing knowledge
of species-environment relations. Regression and canonical ordination are called
for if one wants to build up and extend the knowledge of species-environment
relations (Subsections 3.1.1 and 5.1.1).

Whether to use regression or to use canonical ordination depends on whether
it is considered advantageous to analyse all species simultaneously or not. In
a simultaneous analysis by canonical ordination, one implicitly assumes that all
species are reacting to the same composite gradients of environmental variables
according to a common response model. The assumption arises because canonical
ordination constructs a few composite gradients for all species. By contrast in
regression analysis, a separate composite gradient is constructed for each species.
Regression may therefore result in more detailed descriptions and more accurate
predictions of each particular species, at least if sufficient data are available.
However ecological data that are collected over a large range of habitat variation
require non-linear models; building good non-linear models by regression is not
easy, because it requires construction of composite gradients that are non-linear
combinations of environmental variables (Subsection 3.5.4). In CCA, the composite
gradients are linear combinations of environmental variables, giving a much simpler
analysis, and the non-linearity enters the model through a unimodal model for
a few composite gradients, taken care of in CCA by weighted averaging. Canonical
ordination is easier to apply and requires less data than regression. It provides
a summary of the species-environment relations. The summary may lack the kind
of detail that can in principle be provided by regression; on the other hand, the
advantages of using regression, with its machinery of statistical tests, may be
lost in practice, through the sheer complexity of non-linear model building and
through lack of data. Because canonical ordination gives a more global picture
than regression, it may be advantageous to apply canonical ordination in the
early exploratory phase of the analysis of a particular data set and to apply
regression in subsequent phases to selected species and environmental variables.

As already shown in the examples in Subsection 5.5.2, canonical ordination
and ordination followed by environmental interpretation can be used fruitfully
in combination. If the results do not differ much, then we know that no important
environmental variables have been overlooked in the survey. But note that those
included could merely be correlated with the functionally important ones. A further
proviso is that the number of environmental variables (q) is small compared to
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the number of sites (n). If this proviso is not met, the species-environment
correlation may yield values close to 1, even if none of the environmental variables
affects the species. (Note the remarks about R2 in Subsection 3.2.1.) In particular,
canonical ordination and ordination give identical ordination axes ifq^n - 1.
If the results of ordination and canonical ordination do differ much, then we
may have overlooked major environmental variables, or important non-linear
combinations of environmental variables already included in the analysis. But
note that the results will also differ if CA or DCA detect a few sites on their
first axis that have an aberrant species composition and if these sites are not
aberrant in the measured environmental variables. After deleting the aberrant
sites, the ordinations provided by (D)CA and CCA may be much more alike.

The question whether we have overlooked major environmental variables can
also be studied by combining ordination and canonical ordination in a single
analysis. Suppose we believe that two environmental variables govern the species
composition in a region. We may then choose two ordination axes as linear
combinations of these variables by canonical ordination, and extract further
(unrestricted) axes as in CA or PCA, i.e. by the usual iteration process, making
the axes unrelated to the previous (canonical) axes in each cycle. The eigenvalues
of the extra axes measure residual variation, i.e. variation that cannot be explained
by linear combinations of the environmental variables already included in the
analysis. Such combined analyses are called partial ordination. Partial PCA
(Subsection 5.3.5) is a special case of this.

A further extension of the analytical power of ordination is partial canonical
ordination. Suppose the effects of particular environmental variables are to be
singled out from 'background' variation imposed by other variables. In an
environmental impact study, for example, the effects of impact variables are to
be separated from those of other sources of variation, represented by 'covariables'.
One may then want to eliminate ('partial out') the effects of the covariables and
to relate the residual variation to the impact variables. This is achieved in partial
canonical ordination. Technically, partial canonical ordination can be carried out
by any computer program for canonical ordination. The usual environmental
variables are simply replaced by the residuals obtained by regressing each of the
impact variables on the covariables. The theory of partial RDA and partial CCA
is described by Davies & Tso (1982) and ter Braak (1988). Partial ordination
and partial canonical ordination are available in the computer program CANOCO
(ter Braak 1987b). The program also includes a Monte Carlo permutation procedure
to investigate the statistical significance of the effects of the impact variables.

5.8 Bibliographic notes
A simple ordination technique of the early days was polar ordination (Bray

& Curtis 1957; Gauch 1982), which has been recently reappraised by Beals (1985).
PCA was developed early this century by K. Pearson and H. Hotelling (e.g. Mardia
et al. 1979) and was introduced in ecology by Goodall (1954). PCA was popularized
by Orloci (1966). CA has been invented independently since 1935 by several authors
working with different types of data and with different rationales. Mathematically
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CA is the same as reciprocal averaging, canonical analysis of contingency tables,
and optimal or dual scaling of nominal variables (Gifi 1981; Gittins 1985; Greenacre
1984; Nishisato 1980). Benzecri et al. (1973) developed CA in a geometric context.
Neither of these different approaches to CA is particularly attractive in ecology.
Hill (1973) developed an ecological rationale (Subsection 5.2.2). The dispersion
of the species scores by which we introduced CA in Subsection 5.2.1 is formally
identical to the 'squared correlation ratio' (rj2) used by Torgerson (1958, Section
12.7) and Nishisato (1980, p.23) and also follows from the reciprocal gravity problem
in Heiser (1986). RDA is also known under several names (Israels 1984): PC A
of instrumental variables (Rao 1964), PC A of y with respect to x, reduced rank
regression (Davies & Tso 1982). Ter Braak (1986a) proposed CCA. COR was
derived by H. Hotelling in 1935 (Gittins 1985). Cairipbell & Atchley (1981) provide
a good geometric and algebraic introduction to CVA and Williams (1983) discusses
its use in ecology. Methods to obtain the maximum likelihood solutions for
Gaussian ordination have been investigated, under the assumption of a normal
distribution, a Poisson distribution and a Bernoulli distribution for the species
data, by Gauch et al. (1974), Kooijman (1977) and Goodall & Johnson (1982),
respectively. However the computational burden of these methods and, hence,
the lack of reliable computer programs have so far prevented their use on a routine
basis. Ihm & van Groenewoud (1984) and ter Braak (1985) compared Gaussian
ordination and CA. Non-metric multidimensional scaling started with the work
by Shepard (1962) and Kruskal (1964). Schiffman et al. (1981) provide a clear
introduction. They refer to local non-metric scaling as (row) conditional scaling.
Meulman & Heiser (1984) describe a canonical form of non-metric multidimen-
sional scaling. Early applications of non-metric multidimensional scaling in ecology
were Anderson (1971), Noy-Meir (1974), Austin (1976), Fasham (1977), Clymo
(1980) and Prentice (1977; 1980). The simple unfolding model (response models
with circular contours) can in principle be fitted by methods of multidimensional
scaling (Kruskal & Carroll 1969; Dale 1975; de Sarbo & Rao 1984; Heiser 1987),
but Schiffman et al. (1981) warn of practical numerical problems that may reduce
the usefulness of this approach. Most of the problems have, however, been
circumvented by Heiser (1987).

Many textbooks use matrix algebra to introduce multivariate analysis techniques,
because it provides an elegant and concise notation (Gordon 1981; Mardia et
al. 1979; Greenacre 1984; Rao 1973; Gittins 1985). For ecologists, the book of
Pielou (1984) is particularly recommended. All techniques described in Chapter
5 can be derived from the singular-value decomposition of a matrix, leading to
singular vectors and singular values (Section 5.9). The decomposition can be
achieved by many numerical methods (e.g. Gourlay & Watson 1973), one of which
is the power algorithm (Table 5.6). The power algorithm is used in Chapter 5
because it provides the insight that ordination is simultaneously regression and
calibration, and because it does not require advanced mathematics. The power
algorithm can easily be programmed on a computer, but is one of the slowest
algorithms available to obtain a singular-value decomposition. Hill (1979a) and
ter Braak (1987b) use the power algorithm with a device to accelerate the process.
The iteration processes of Tables 5.2 and 5.6 are examples of alternating least-
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squares methods (Gifi 1981) and are related to the EM algorithm (Everitt 1984).
The power algorithm is also a major ingredient of partial least squares (Wold
1982).

Computer programs for PCA, COR and CVA are available in most statistical
computer packages. CA and DC A are available in DECOR AN A (Hill 1979).
The program CANOCO (ter Braak 1987b) is an extension of DECOR AN A and
it also includes PCA, PCO, RDA, CCA, CVA and partial variants of these
techniques. All these techniques can be specified in terms of matrix algebra (Section
5.9). With the facilities for matrix algebra operations in GENSTAT (Alvey et
al. 1977) or SAS (SAS Institute Inc. 1982), one can therefore write one's own
programs to analyse small to medium-sized data sets. Schiffman et al. (1981)
describe various programs for multidimensional scaling.

Chapter 5 uses response models as a conceptual basis for ordination. Carroll
(1972) defined a hierarchy of response models, from the linear model (Equation
5.11), through the model with circular contour lines (Equation 5.5) to the full
quadratic model (Equation 3.24) with ellipsoidal contours of varying orientation.
He terms these models the vector model, the (simple) unfolding model and the
general unfolding model, respectively (also Davison 1983). By taking even more
flexible response models, we can define even more general ordination techniques.
However the more flexible the model, the greater the computational problems
(Prentice 1980). Future research must point out how flexible the model can be
to obtain useful practical solutions.

5.9 Ordination methods in terms of matrix algebra

What follows in this section is a short introduction to ordination methods in
terms of matrix algebra:

- to facilitate communication between ecologists and the mathematicians they
may happen to consult

- to bridge the gap between the approach followed in Chapter 5 and the
mainstream of statistical literature on multivariate methods

- to suggest computational methods based on algorithms for singular-value
decomposition of a matrix or to extract eigenvalues and eigenvectors from
a symmetric matrix.

To start, please read Section 5.8 first.

5.9.1 Principal components analysis (PCA)

Let Y = {yki} be an m X n matrix containing the data on m species (rows of
the matrix) and n sites (columns of the matrix). In the most familiar form of
PCA, species-centred PCA, the data are abundances with the species means already
subtracted, so that yk+ = 0 as in Subsection 5.3.1. PCA is equivalent to the
singular-value decomposition (SVD) of Y (e.g. Rao 1973; Mardia et al. 1979;
Greenacre 1984)

Y = P A 0 5 Q ' Equation 5.19
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where P and Q are orthonormal matrices of dimensions m X r and n X r, respectively,
with r = min (m,n), i.e. P 'P = I and Q'Q = I, and A is a diagonal matrix
with diagonal elements Xs (s = 1 ... r), which are arranged in order of decreasing
magnitude A,, ̂  X2 ̂  ^3 ̂  ••• ^ 0.

The columns of P and Q contain the singular vectors of Y, and \®-5 is the 5th
singular value of Y. If the 5th column of P is denoted by p5, an m vector, and
the 5th column of Q by q,, an n vector, Equation 5.19 can be written as

Y = l;=1 ^ 0 5 p 5 q / Equation 5.20

The least-squares approximation of Y in Equation 5.11 of Subsection 5.3.2
is obtained from Equation 5.20 by retaining only the first two terms of this
summation, and by setting bs = \®-5 ps and \s = q, (5 = 1,2).
The kth element of bj then contains the species score bkl, and the /th element
of x, contains the site score xi{ on the first axis of PCA. Similarly, b2, and x2
contain the species and sites scores on the second axis of PCA. The species and
sites scores on both axes form the coordinates of the points for species and sites
in the biplot (Subsection 5.3.4). The interpretation of the PCA biplot follows
from Equation 5.11: inner products between species points and site points provide
a least-squares approximation of the elements of the matrix Y (Gabriel 1971;
1978). Equation 5.20 shows that the total sum of squares T,ki ykl equals
A.,+ ... + Xn the sum of all eigenvalues, and that the total residual sum of squares

ZkJ [yki - (bkx x n + bk2 xi2)f = X3+ X4 + ... + Xr

An appropriate measure of goodness of fit is therefore (kl + X2)/(sum of all
eigenvalues). From P'P = I, Q'Q = I and Equation 5.20, we obtain

b, = Yx, Equation 5.21

and

Xs \s — Y'b5. Equation 5.22

Hence, the species scores are a weighted sum of the site scores and the site scores
are proportional to a weighted sum of the species scores (Table 5.6 and Subsection
5.3.2). Equation 5.21 and Equation 5.22 show that bs and x5 are eigenvectors
of YY' and Y'Y, respectively, and that Xs is their common eigenvalue; whence,
the R-mode and Q-mode algorithms of Subsection 5.3.6.

The SVD of the species-by-species cross-product matrix YY' is P A P', as
follows from Equation 5.19 by noting that Q'Q = I. A least-squares approximation
of the matrix YY' in two dimensions is therefore given by the matrix b,b', +
b2 b'2. Since YY'/(« - 1) contains covariances between species, the biplot of \s
and bs is termed the covariance biplot (Corsten & Gabriel 1976; ter Braak 1983).
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The SVD of the site-by-site cross-product matrix Y'Y is Q A Q'. A biplot
of Y and Y'Y is therefore obtained by redefining bs and xs as b5 = ps and
x5 = Xs°-5q^. The inter-site distances in this biplot approximate the Euclidean
Distances between sites as defined by Equation 5.16; hence the name Euclidean
Distance biplot. The approximation is, however, indirect namely through Equation
5.17 with Cy the (/, y)th element of Y'Y. A consequence of this is that the inter-
site distances are always smaller than the Euclidean Distances.

5.9.2 Correspondence analysis (CA)

In CA, the species-by-sites matrix Y contains the abundance values yki in which
yki ^ 0. The data is not previously centred in CA. Let M = diag 0^+), an
m X m diagonal matrix containing the row totals of Y, N = diag (y+t), an n
X n diagonal matrix containing the column totals of Y.

As stated in Subsection 5.2.1, CA chooses standardized site scores x that
maximize the dispersion of species scores, which are themselves weighted averages
of the site scores (Equation 5.1). In matrix notation, the vector of species scores
u = (uk)[k = 1, ..., m] is

u = M-'Yx Equation 5.23

and the dispersion is

5 = u'Mu/x'Nx = x'Y'M Yx /x'Nx Equation 5.24

where the denominator takes account of the standardization of x (Table 5.2c),
provided x is centred (l'Nx = 0).

The problem of maximizing 8 with respect to x has as solution the second
eigenvector of the eigenvalue equation

Y'M !Yx = X N x Equation 5.25

with 5 = X (Rao 1973, Section lf.2 and p.74; Mardia et al. 1979, Theorem A9.2).

This can be seen by noting that the first eigenvector is a trivial solution (x =
1; X = 1); because the second eigenvector is orthogonal to the first eigenvector
in the N metric, the second eigenvector maximizes 5 subject to l'Nx = 0. What
is called the first eigenvector of CA in Section 5.2 is thus the second eigenvector
of Equation 5.25, i.e. its first non-trivial eigenvector. The second non-trivial
eigenvector of Equation 5.25 is similarly seen to maximize 5, subject to being
centred and to being orthogonal to the first non-trivial eigenvector, and so on
for subsequent axes. Equation 5.25 can be rewritten as

}ix = N-'Y'u Equation 5.26
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Equations 5.23 and 5.26 form the 'transition equations' of CA. In words: the
species scores are weighted averages of the site scores and the site scores are
proportional to weighted averages of the species scores (Table 5.2 and Exercise
5.1.3).

The eigenvectors of CA can also be obtained from the SVD

M-o.s Y N'0-5 = P A°-5Q' Equation 5.27

by setting us = Xs
05 M~°5 ps and x5 = N~°5 q,, where p5 and q, are the 5th columns

of P and Q, respectively (s — 1, ..., r).

This can be seen by inserting the equations for us and x5 in Equations 5.23 and
5.26, and rearranging terms. It is argued in Subsection 5.2.7 that it is equally
valid to distribute Xs in other ways among u5 and xs, as is done, for example,
in Hill's scaling (Subsection 5.2.2).

CA differs from PC A in the particular transformation of Y in Equation 5.27
and in the particular transformation of the singular vectors described just below
that equation.

5.9.3 Canonical correlation analysis (COR)

As in species-centred PCA, let Y be an m X n matrix in which the A:th row
contains the centred abundance values of the k\h species (i.e. yk+ = 0) and let
Z be a q X n matrix in which the y'th row contains the centred values of the
yth environmental variable (i.e. z;+ = 0). Define

S12 = YZ ', SM = YY ', S22 = ZZ' and S21 = S'12. Equation 5.28

The problem of COR is to determine coefficients for the species b —(bk)[k =
1, ..., m] and for the environmental variables c =(c/-)[/ = 1, ..., q] that maximize
the correlation between x* = Y'b and x = Z'c. The solution for b and c is known
to be the first eigenvector of the respective eigenvalue equations

S!2 S^'1 S21 b = A. SM b Equation 5.29

S21 Sn"1 SI2 c = X S22 c Equation 5.30

The eigenvalue X equals the squared canonical correlation (Rao 1973; Mardia
et al. 1979; Gittins 1985).

Note that b can be derived from a multiple regression of x on the species,
or from c, by

b = (YY')-1 Yx = Sn"1 S12 c Equation 5.31

and, similarly, c can be derived from a multiple regression of x* on the environmental
variables, or from b, by
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Xc = (ZZ')-1 Zx* = S22 ' S21 b Equation 5.32

It can be verified that b and c from Equations 5.31 and 5.32 satisfy Equations
5.29 and 5.30, by inserting b from Equation 5.31 into Equation 5.32 and by inserting
c from Equation 5.32 into Equation 5.31; but note that we could have distributed
X in other ways among Equations 5.31 and 5.32. Equations 5.31 and 5.32 form
the basis of the iteration algorithm of Table 5.12. Step 7 of Table 5.12 takes
care of the eigenvalue: at convergence, x is divided by X (Table 5.6c). Once
convergence is attained, c should be divided by X to ensure that the final site
scores satisfy x = Z'c (Step 5);hence the X in Equation 5.32. The second and
further axes obtained by Table 5.12 also maximize the correlation between x
and x*, but subject to being uncorrelated to the site scores of the axes already
extracted.

COR can also be derived from the SVD of

s i f° ' 5 si2 S22 °'5 = p A ° 5 Q' Equation 5.33

The equivalence of Equation 5.31 with Equation 5.33 can be verified by pre-
multiplying Equation 5.33 on both sides with Sn~0-5 and post-multiplying Equation
5.33 on both sides with Q and by defining

B = SM
0-5 P A05 and C = S22

0-5 Q. Equation 5.34

The 5th column of B and of C contain the canonical coefficients on the 5th axis
of the species and environmental variables, respectively. The equivalence of
Equation 5.32 with Equation 5.33 can be shown similarly.

COR allows a biplot to be made in which the correlations between species
and environmental variables are approximated. The problem to which the canonical
correlation biplot is the solution can be formulated as follows: determine points
for species and environmental variables in ^-dimensional space in such a way
that their inner products give a weighted least-squares approximation to the
elements of the covariance matrix S12. In the approximation, the species and
the environmental variables are weighted inversely with their covariance matrices
S,, and S22, respectively. Let the coordinates of the points for the species be
collected in the m X t matrix G and those for the environmental variables in
the q X / matrix H. The problem is then to minimize

| |S n °-5 (S12 - GH') S22-°-5||2 = ||SM-°-5 S12 S22-°-5 - (S n °-5 G)(S22 °-5 H)'| | 2

Equation 5.35

with respect to the matrices G and H, where ||«|| is the Euclidean matrix norm,
e.g.

From the properties of an SVD (Subsection 5.9.1), it follows that the minimum
is attained when S , , 0 5 G and S 2 2

0 5 H correspond to the first / columns of the
matrices PA05 and Q of Equation 5.33, respectively. The required least-squares
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approximation is thus obtained by setting G and H equal to the first / columns
of S,,05 PA05 and S22

05 Q, respectively. Again, A can be distributed in other
ways among P and Q. For computational purposes, note that

SM
05 P A05 = SN S M

0 5 P A05 = S n B = YY'B = YX Equation 5.36

and

S22
0-5 Q = S22 S22-°-5 Q = S22 C = ZX Equation 5.37

where X = Z'C. Because X'X = I, the biplot can thus be constructed from the
inter-set correlations of the species and the intra-set correlations of the envir-
onmental variables (which are the correlations of the site scores x with the species
variables and environmental variables, respectively). This construction rule requires
the assumption that the species and environmental variables are standardized to
unit variance, so that S12 is actually a correlation matrix. The angles between
arrows in the biplot are, however, not affected by whether either covariances
or correlations between species and environment are approximated in the canonical
correlation biplot.

5.9.4 Redundancy analysis (RDA)

RDA is obtained by redefining S n in subsection 5.9.3 to be the identity matrix
(Rao 1973, p.594-595). In the RDA biplot, as described in Subsection 5.5.3, the
coordinates of the point for the species and the variables are given in the matrices
P and S22°5 Q A0-5, respectively.

5.9.5 Canonical correspondence analysis (CCA)

CCA maximizes Equation 5.24 subject to Equation 5.14, provided x is centred.
If the matrix Z is extended with a row of ones, Equation 5.14 becomes x
= Z'c, with c = (Cj)\j = 0, 1, ..., q\. By inserting x = Z'c in Equation 5.24
and (re)defining, with Y non-centred,

S12 = YZ', S,, = M = diag (yk+) and S22 = ZNZ' Equation 5.38

we obtain

5 = c'S2I S,,"1 S12 c / c ' S22 c Equation 5.39

The solutions of CCA can therefore be derived from the eigenvalue Equation
5.30 with S12, S n and S22 defined as in Equation 5.38. If defined in this way,
CCA has a trivial solution c' = (1, 0, 0, ..., 0), X = 1, x = 1 and the first non-
trivial eigenvector maximizes 5 subject to l'Nx = l'NZ'c = 0 and the maximum
8 equals the eigenvalue. A convenient way to exclude the trivial solution is to
subtract from each environmental variable its weighted mean zy = I , y+i zji/y++
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(and to remove the added row of ones in the matrix Z). Then, the matrix Z
has weighted row means equal to 0: L, y+i zjt — 0. The species scores and the
canonical coefficients of the environmental variables can be obtained from Equation
5.33 and Equation 5.34, by using the definitions of Equation 5.38.

As described in Subsection 5.5.2, the solution of CCA can also be obtained
by extending the iteration algorithm of Table 5.2. Steps 1, 4, 5 and 6 remain
the same as in Table 5.2. In matrix notation, the other steps are

Step 2 b = M ' Y x Equation 5.40

Step 3a x* = N 1 Y'b Equation 5.41

Step 3b c = (ZNZ')"1 ZN x* Equation 5.42

Step 3c x = Z ' c Equation 5.43

with b = u, the m vector containing the species scores uk(k = 1, ..., m).

Once convergence has been attained, to ensure that the final site scores satisfy
x = Z'c, c should be divided by X, as in COR (below Equation 5.32). This amounts
to replacing c in Equation 5.42 by Xc (as in Equation 5.32). To show that the
algorithm gives a solution of Equation 5.30, we start with Equation 5.42, modified
in this way, insert x* of Equation 5.41 in Equation 5.42, next insert b by using
Equation 5.40, next insert x by using Equation 5.43 and finally use the definitions
of S n ,S 1 2 andS 2 2 inCCA.

CCA allows a biplot to be made, in which the inner products between points
for species and points for environmental variables give a weighted least-squares
approximation of the elements of the mX q matrix

W = M-'YZ',

the (kj)l)\ element of which is the weighted average of species k with respect
to the (centred) environmental variable j . In the approximation, the species are
given weight proportional to their total abundance 0^+) and the environmental
variables are weighted inversely with their covariance matrix S22. The possibility
for such a biplot arises because

M0-5 W S22-°-5 = S,f°-5 S,2 S22-°-5 Equation 5.44

so that, from Equations 5.44 and 5.33, after rearranging terms,

W = (Sn-°-5 P) A05 (S22
05 Q)' Equation 5.45

Apart from particular considerations of scale (Subsection 5.2.2), the coordinates
of the points for species and environmental variables in the CCA biplot are thus
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given by the first t columns of S,f05 P A05 and S22
05 Q, respectively. The matrix

S,,-°5 P A05 actually contains the species scores, as follows from Equation 5.34.
The other matrix required for the biplot can be obtained by

S22°-5Q = S22 S22-°-5 Q = S22 C = ZNZ'C = ZNX Equation 5.46

5.10 Exercises

Exercise 5.1 Correspondence analysis: the algorithm

This exercise illustrates the two-way weighted-averaging algorithm of CA (Table
5.2) with the small table of artificial data given below.

Species

A
B
C
D

Sites
1

1
0
0
3

2

0
0
2
0

3

0
1
0
0

4

1
0
1
1

5

0
1
0
1

The data appear rather chaotic now, but they will show a clear structure after
having extracted the first CA ordination axis. The first axis is dealt with in Exercises
5.1.1-3, and the second axis in Exercises 5.1.4-6.

Exercise 5.1.1 Take as site scores the values 1, 2, ..., 5 as shown above the
data table. Now, standardize the site scores by using the standardization procedure
described in Table 5.2c.

Exercise 5.1.2 Use the site scores so standardized as initial site scores in the
iteration process (Table 5.2a). Carry out at least five iteration cycles and in each
cycle calculate the dispersion of the species scores. (Use an accuracy of three
decimal places in the calculations for the site and species scores and of four decimal
places for s.) Note that the scores keep changing from iteration to iteration, but
that the rank order of the site scores and of the species scores remains the same
from Iteration 4 onwards. Rearrange the species and sites of the table according
to their rank order. Note also that the dispersion increases during the iterations.

Exercise 5.1.3 After 19 iterations, the site scores obtained are 0.101, -1.527,
1.998, -0.524, 1.113. Verify these scores for the first CA axis (within an accuracy
of two decimal places) by carrying out one extra iteration cycle. What is the
eigenvalue of this axis? Verify that Equation 5.1 holds true for the species scores
and site scores finally obtained, but that Equation 5.2 does not hold true. Modify
Equation 5.2 so that it does hold true.
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Exercise 5.1.4 We now derive the second CA axis by using the same initial site
scores as in Exercise 5.1.2. Orthogonalize these scores first with respect to the
first axis by using the orthogonalization procedure described in Table 5.2b, and
next standardize them (round the site scores of the first axis to two decimals
and use four decimals for v and s and three for the new scores).

Exercise 5.1.5 Use the site scores so obtained as initial site scores to derive the
second axis. The scores stabilize in four iterations (within an accuracy of two
decimal places).

Exercise 5.1.6 Construct an ordination diagram of the first two CA axes. The
diagram shows one of the major 'faults' in CA. What is this fault?

Exercise 5.2 Adding extra sites and species to a CA ordination

Exercise 5.2.1 We may want to add extra species to an existing CA ordination.
In the Dune Meadow Data, Hippophae rhamnoides is such a species, occurring
at Sites 9, 18 and 19 with abundances 1, 2 and 1, respectively. Calculate from
the site scores in Table 5.1c the score for this species on the first CA axis in
the way this is done with CA. Plot the abundance of the species against the
site score. What does the species score mean in this plot? At which place does
the species appear in Table 5.1c? Answer the same questions for Poa annua, which
occurs at Sites 1, 2, 3, 4, 7, 9, 10, 11, 13 and 18 with abundances 3, 3, 6, 4,
2, 2, 3, 2, 3 and 4, respectively, and for Ranunculus acris, which occurs at Sites
5, 6, 7, 9, 14 and 15 with abundances 2, 3, 2, 2, 1 and 1, respectively.

Exercise 5.2.2 Similarly, we may want to add an extra site to an existing CA
ordination. Calculate the score of the site where the species Bellis perennis, Poa
pratensis and Rumex acetosa are present with abundances 5, 4 and 3, respectively
(imaginary data). (Hint: recall how the site scores were obtained from the species
scores in Exercise 5.1.3.) Species and sites so added to an ordination are called
passive, to distinguish them from the active species and sites of Table 5.1. The
scores on higher-order axes are obtained in the same way.

Exercise 5.2.3 Rescale the scores of Table 5.1c to Hill's scaling and verify that
the resulting scores were used in Figure 5.4.

Exercise 5.3 Principal components analysis

Add the extra species and the extra site of Exercise 5.2 to the PCA ordination
of Table 5.5c. Plot the abundance of the extra species against the site scores.
What does the species score mean in this plot? At which places do the species
appear in Table 5.5c?
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Exercise 5.4 Length of gradient in DC A

Suppose DCA is applied to a table of abundances of species at sites and that
the length of the first axis is 1.5 s.d. If, for each species, we made a plot of
its abundance against the site scores of the first axis, would most plots suggest
monotonic curves or unimodal curves? And what would the plots suggest if the
length of the axis was 10 s.d.?

Exercise 5.5 Interpretation of joint plot and biplot

Exercise 5.5.1 Rank the sites in order of abundance of Juncus bufonius as inferred
from Figure 5.7, as inferred from Figure 5.15 and as observed in Table 5.1a.
Do the same for Eleocharis palustris.

Exercise 5.5.2 If Figure 5.15 is interpreted erroneously as a joint plot of DCA,
one gets different inferred rank orders and, when Figure 5.7 is interpreted
erroneously as a biplot, one also gets different rank orders. Is the difference in
interpretation greatest for species that lie near the centre of an ordination diagram
or for species that lie on the edge of an ordination diagram?

Exercise 5.6 Detrended canonical correspondence analysis

Cramer (1986) studied vegetational succession on the rising sea-shore of an
island in the Stockholm Archipelago. In 1978 and 1984, the field layer was sampled
on 135 plots of 1 m2 along 4 transects. The transects ran from water level into
mature forest. One of the questions was whether the vegetational succession keeps
track with the land uplift (about 0.5 cm per year) or whether it lags behind.
In both cases, the vegetation zones 'run down the shore', but in the latter case
too slowly. Because succession in the forest plots was not expected to be due
to land uplift, only the 63 plots up to the forest edge were used. These plots
contained 68 species with a total of about 1000 occurrences on the two sampling
occasions. An attempt was made to answer the question by using detrended
canonical correspondence analysis (DCCA) with two explanatory variables, namely
altitude above water level in 1984 (not corrected for land uplift; so each plot
received the same value in 1978 as in 1984) and time (0 for 1978, 6 for 1984).
The altitude ranged from -14 to 56 cm. The first two axes gave eigenvalues 0.56
and 0.10, lengths 4.4 and 0.9 s.d. and species-environment correlations 0.95 and
0.74, respectively. Table 5.14 shows that the first axis is strongly correlated with
altitude and almost uncorrelated with time, whereas the second axis is strongly
correlated with time and almost uncorrelated with altitude. However the canonical
coefficients tell a more interesting story.

Exercise 5.6.1 With Table 5.14, show that the linear combination of altitude
and time best separating the species in the sense of Section 5.5.2 is

x = 0.054 z, + 0.041 z2 Equation 5.47
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Table 5.14 Detrended canonical correspondence analysis of rising shore
vegetation data: canonical coefficients (100 X c) and intra-set correlations
(100 X r) for standardized environmental variables. In brackets, the
approximate standard errors of the canonical coefficients. Also given are
the mean and standard deviation (s.d.) of the variables.

Variable

Altitude (cm)
Time (years)

Coefficients

Axis 1

100 (3)
12(3)

Axis 2

4(4)
-34 (3)

Correlations

Axis 1

99
7

Axis 2

19
-99

mean

22
3

s.d.

18.5
2.9

where zx is the numeric value of altitude (cm) and z2 is the numeric value of
time (years) and where the intercept is, arbitrary, set to zero.

Hint: note that Table 5.14 shows standardized canonical coefficients, i.e. canonical
coefficients corresponding to the standardized variables z* = (z, - 22)/18.5 and
z2* = (z2-3)/2.9.
Similarly, show that the standard errors of estimate of c, = 0.054 is 0.0016 and
of c2 = 0.041 is 0.010.

Exercise 5.6.2 Each value of x in Equation 5.47 stands for a particular species
composition (Figures 5.8 and 5.18) and changes in the value of x express species
turnover along the altitude gradient in multiples of s.d. With Equation 5.47,
calculate the species turnover between two plots that were 15 cm and 25 cm
above water level in 1984, respectively. Does the answer depend on the particular
altitudes of these plots or only on the difference in altitude? What is, according
to Equation 5.47, the species turnover between these plots in 1978?

Exercise 5.6.3 With Equation 5.47, calculate the species turnover between 1978
and 1984 for a plot with an altitude of 15 cm in 1984? Does the answer depend
on altitude?

Exercise 5.6.4 With Equation 5.47, calculate the altitude that gives the same
species turnover as one year of succession.

Exercise 5.6.5 Is there evidence that the vegetational succession lags behind uplift?

Exercise 5.6.6 Roughly how long would it take to turn the species composition
of the plot closest to the sea into that of the plot that is on the edge of the
forest? Hint: use the length of the first axis. Is there evidence from the analysis
that there might also be changes in species composition that are unrelated to
land uplift? Hint: consider the length of the second axis.
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5.11 Solutions to exercises

Exercise 5.1 Correspondence analysis: the algorithm

Exercise 5.1.1 The centroid of the site scores is z — ( 4 X 1 + 2 X 2 + 1
X 3 + 3 X 4 + 2 X 5 ) / 1 2 = 2.750 and their dispersion is s2 = [4 X (1 - 2.750)2

+ ... + 2 X (5 - 2.750)2]/12 = 2.353, thus s = 1.5343. The standardized initial
score for the first site is thus x, = (1 - 2.750)/1.5343 = -1.141. The other scores
are listed on the second line of Table 5.15.

Exercise 5.1.2 In the first iteration cycle at Step 2, we obtain for Species C,
for example, the score [2 X (-0.489) + 1 X 0.815)]/(2 + 1) = -0.054, and for
Site 5 at Step 3, the score (0.815 - 0.228)/(l + 1) = 0.294. The dispersion of
the species scores in the first iteration cycle is 5 = (2 X 0.1632 + 2 X 0.8152

+ 3 X 0.0542 + 5 X 0.2282)/12 = 0.138. See further Table 5.15. In the iterations
shown z = 0.000, apart from Iteration 3, where z = -0.001 (Step 5). The rearranged
data table shows a Petrie matrix (Subsection 5.2.3).

Exercise 5.1.3 The standardized site scores obtained in the 19th and 20th iteration
are equal within the accuracy of two decimal places; so the iteration process has
converged (Table 5.15). The eigenvalue of the first axis is X{ = 0.7799, the value
of s calculated last. Equation 5.2 does not hold true for the final site and species
scores. But the site scores calculated in Step 3 are weighted averages of the species
scores and are divided in the 20th iteration by s = 0.7799 to obtain the final
site scores. On convergence, s equals the eigenvalue X; thus the final site and
species scores satisfy the relation X xt = I£L, yki ukl'Lk

nL]yki. Applying Steps 3,
(4) and 5 to the eigenvector (the scores xt) thus transforms the eigenvector into
a multiple of itself. The multiple is the 'eigenvalue' of the eigenvector. Note that
5 equals X within arithmetic accuracy.

Exercise 5.1.4 In Step 4.2, we obtain v = [4 X (-1.141) X 0.10 + 2 X (-0.489)
X (-0.53) + 1 X 0.163 X 2.00 + 3 X 0.815 X (-0.53) + 2 X 1.466 X 1.11]/
12 = 0.2771 and for Site 1 at Step 4.3, the score -1.141 -0.277 1 X 0.10 =
-1.169. See further the first four lines of Table 5.16.

Exercise 5.1.5 See Table 5.16.

Exercise 5.1.6 The configuration of the site points looks like the letter V, with
Site 1 at the bottom and Sites 2 and 3 at the two extremities. This is the arch
effect of CA (Section 5.2.3).

Exercise 5.2 Adding extra sites and species to a CA ordination

Exercise 5.2.1 In CA, Equation 5.1 is used to obtain species scores from site
scores. Thus the score for Hippophae rhamnoides is [1 X 0.09 + 2 X (-0.31)
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Table 5.15 Two-way weighted averaging algorithm applied to the data of Exercise 5.1 to
obtain the first ordination axis of CA. The initial site scores (Line 1) are first standardized
(Line 2). The values in brackets are rank numbers of the scores of the line above. Column
1, iteration number; Column 2, step number in Table 5.2 ; Column 3, x is site score and
u is species score; Column 4, dispersion of the species scores (8) when preceded by w,
or otherwise the square root of the dispersion of the site scores of the line above (s).

Column

1

0
0
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5

20
20
20

2

1
5
2
3
5
2
3
5
2
3
5
2
3
5
2
3
5

2
3
5

3

X

X

u
X

X

u
X

X

u
X

X

u
X

X

u
X

X

u
X

X

4

1.5343
0.1375

0.3012
0.6885

0.6953
0.7171

0.7193
0.7342

0.7383
0.7498

0.7529
0.7606

0.7800

0.7799

Sites

1

1.000
-1.141

-0.212
-0.704

-0.393
-0.567

-0.322
-0.448

-0.251
-0.340

-0.185
-0.246
(3)

0.081
0.104
(3)

2

2.000
-0.489

-0.054
-0.179

-0.283
-0.408

-0.465
-0.646

-0.628
-0.851

-0.764
-1.015
(1)

-1.193
-1.530
(1)

3

3.000
0.163

0.815
2.706

1.841
2.646

1.868
2.597

1.865
2.526

1.840
2.444
(5)

1.556
1.995
(5)

4

4.000
0.815

-0.148
-0.491

-0.402
-0.580

-0.426
-0.592

-0.436
-0.591

-0.440
-0.584
(2)

-0.409
-0.524
(2)

5

5.000
1.466

0.294
0.976

0.758
1.089

0.815
1.133

0.852
1.154

0.875
1.162
(4)

0.867
1.112
(4)

Species

A

-0.163
(2)

-0.598
(1)

-0.574
(1)

-0.520
(2)

-0.466
(2)

-0.211
(2)

B C D

0.815-0.054-0.228
(4)

1.841
(4)

(3) (1)

-0.283 -0.325
(3) (2)

1.868-0.465-0.238
(4) (2) (3)

1.865-0.628-0.161
(4) (1) (3)

1.840-0.764-0.091
(4)

1.556
(4)

(1) (3)

-1.193 0.178
(1) (3)

+ 1 X (-0.68)]/(l + 2 + 1) = -0.30, for Poa annua -0.33 and for Ranunculus
acris -0.19. All three species come in Table 5.1c between Elymus repens and
Leontodon autumnalis. The plots asked for suggest unimodal response curves
for Hippophae rhamnoides and Poa annua, but a bimodal curve for Ranunculus
acris. The species score is the centroid (centre of gravity) of the site scores in
which they occur. The score gives an indication of the optimum of the response
curve for the former two species, but has no clear meaning for the latter species.
In general, species with a score close to the centre of the ordination may either
be unimodal, bimodal or unrelated to the axes (Subsection 5.2.5).

Exercise 5.2.2 The weighted average for the site is [3 X (-0.65) + 5 X (-0.50)
+ 4 X (-0.39)]/(3 + 5 + 4) = -0.50, which must be divided as in Exercise 5.1.3
by X (= 0.536) to obtain the site score -0.93. If we calculated the score for the
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Table 5.16 Two-way weighted averaging algorithm applied to the data of Exercise 5.1 to
obtain the second ordination axis of CA. The first line shows the site scores of the first
ordination axis (/). The scores on the second line are used as the initial scores after
orthogonalizing them with respect to the first axis (Line 3) and standardizing them (Line
4). Column 5 is v, defined in Table 5.2; the other columns are defined in Table 5.15.

Column Sites Species

1

0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4

2

4.1
4.1
4.3
5.3
2
3
4
5
2
3
4
5
2
3
4
5
2
3
4
5

3

/
X

X

X

u
X

X

X

u
X

X

X

u
X

X

X

u
X

X

X

4

0.9612
0.0837

0.2182
0.5956

0.5967
0.5980

0.5982
0.5984

0.5985

5

0.2771

0.0001

-0.0011

-0.0014

-0.0016

1

0.10
-1.141
-1.169
-1.216

-0.243
-0.243
-1.114

-0.647
-0.647
-1.084

-0.645
-0.645
-1.078

-0.642
-0.642
-1.073

2

-1.53
-0.489
-0.065
-0.068

0.288
0.288
1.320

0.825
0.823
1.379

0.832
0.830
1.387

0.836
0.834
1.393

3

2.00
0.163

-0.391
-0.407

0.399
0.399
1.829

1.043
1.045
1.751

1.042
1.045
1.747

1.045
1.048
1.751

4

-0.53
0.815
0.962
1.001

5

1.11
1.466
1.158
1.205

-0.036 0.056
-0.036 0.056
-0.165

-0.155
-0.156
-0.261

-0.159
-0.160
-0.267

0.257

0.197
0.198
0.332

0.203
0.205
0.343

-0.156 0.206
-0.157
-0.262

0.208
0.348

-0.107 0.399 0.288 -0.288

-0.639 1.043 0.825 -0.650

-0.673 1.042 0.832 -0.636

-0.672 1.045 0.836 -0.632

second axis by the same method, the extra site would come somewhat below
Site 5 in the ordination diagram (Figure 5.4).

Exercise 5.2.3 The site scores of Table 5.1c must be divided by \ (
= v70.464/0.536) = 0.93 and the species scores by \A(1 - )
V (0.536 X 0.464) = 0.50 (Subsection 5.2.2). For Site 20, for example, we obtain
the score 1.95/0.93 = 2.10 and for Juncus articulatus 1.28/0.50 = 2.56. In Hill's
scaling, the scores satisfy Equation 5.2 whereas Equation 5.1 must be modified
analogously to the modification of Equation 5.2 in Exercise 5.1.3

Exercise 5.3 Principal components analysis

The mean abundance of Hippophae rhamnoides is 0.2. With Equation 5.8,
we obtain the score (0-0.2) X (-0.31) + (0 -0.2) X (-0.30) + ... + (2-0.2)
X (-0.04) + (1-0.2) X 0.00 4- ... 4- (0-0.2) X 0.45 = -0.03. Similarly we obtain
the scores -3.22 for Poa annua and -1.48 for Ranunculus acris. The plots suggest
monotonic decreasing relations for the latter two species, and a unimodal relation
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(if any) for the first species. If straight lines are fitted in these plots, the slope
of regression turns out to equal the species score (Subsection 5.3.1). The species
come at different places in Table 5.5c. For example, Poa annua comes just after
Bromus hordaceus. The score for the extra site is calculated by dividing the weighted
sum (Equation 5.9) by the eigenvalue: 3.90/471 = 0.008.

Exercise 5.4 Length of gradient in DC A

In DCA, axes are scaled such that the standard deviation (tolerance) of the
response curve of each species is close to one and is on average equal to one.
Each response curve will therefore rise and decline over an interval of about
4 s.d. (Figure 3.6; Figure 5.3b). If the length of the first axis equals 1.5 s.d.,
the length of the axis covers only a small part of the response curve of each
species. Most plots will therefore suggest monotonic curves, although the true
response curves may be unimodal (Figure 3.3). If the length of the first axis is
10 s.d., the response curves of many species are'contained within the length of
the axis, so that many of the plots will suggest unimodal response curves.

5.5 Interpretation of joint plot and biplot

Exercise 5.5.1 Inferred rank orders of abundance are for Juncus bufonius

from Figure 5.7 (DCA) sites 12 > 8 > 13 > 9 > 4 « 18
from Figure 5.15 (PCA) sites 13%3>4>9%12
from Table 5.1a (data) sites 9 = 1 2 > 1 3 > 7 - -

and for Eleocharis palustris

from Figure 5.7 (DCA) sites 16> 14%15>20>8
from Figure 5.15 (PCA) sites 16>20>15> 14>19
from Table 5.1a (data) Sites 16 > 15 > 8 = 14 = 20.

Exercise 5.5.2 The difference in interpretation is greatest for species that lie at
the centre of the ordination diagram. In a DCA diagram, the inferred abundance
drops with distance from the species point in any direction, whereas in a PCA
diagram the inferred abundance decreases or increases with distance from the
species point, depending on the direction. This difference is rather unimportant
for species that lie on the edge of the diagram, because the site points all lie
on one side of the species point. One comes to the same conclusion by noting
that a species point in a DCA diagram is its inferred optimum; if the optimum
lies far outside the region of the sites the inferred abundance changes monotonically
across the region of site points (Eleocharis palustris in Figure 5.7).

Exercise 5.6 Detrended canonical correspondence analysis

Exercise 5.6.1 From Table 5.14, we see that the best linear combination is
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x — 1.00 z* + 0.12 z2*. In terms of unstandardized variables, we obtain x =
1.00 X (z, - 22)/18.5 + 0.12 X (z2 - 3)/2.9 = (1.00/18.5)z, + (0.12/2.9)z2 - 22/
18.5 - 0.12 X 3/2.9 = 0.054 z, + 0.041 z2 - 1.31. The standard error of cx is
0.03/18.5 = 0.00162 and of c2 is 0.03/2.9 = 0.010.

Exercise 5.6.2 The value of x for the plot that was 15 cm above water level
in 1984 is x = 0.054 X 15 + 0.041 X 6 = 1.056 s.d. For the plot 25 cm above
water level, we obtain x = 0.054 X 25 + 0.041 X 6 = 1.596 s.d. Hence, the
species turnover is 1.596 - 1.056 = 0.54 s.d. According to Equation 5.47, turnover
depends only on the difference in altitude between the plots: 0.054 X (25 - 15)
= 0.54, and does not depend on the particular altitudes of the plots nor on the
year of sampling. The species turnover between plots differing 10 cm in altitude
is therefore 0.54 s.d. on both occasions of sampling.

Exercise 5.6.3 The value of x for a plot with an altitude of 15 cm in 1984 was
1.056 s.d. in 1984 (Exercise 5.6.2) and was 0.054 X 15 + 0.041 X 0 = 0.81 s.d.
in 1978. (Note that in the model altitude was not corrected for uplift; hence
z, = 15 in 1984 and in 1978.) The species turnover is 1.056 - 0.81 = 0.246 s.d.,
which equals 0.041 X 6 s.d. and which is independent of altitude. Hence, each
plot changes about a quarter standard deviation in 6 years.

Exercise 5.6.4 The species turnover rate is 0.041 s.d. per year, whereas the species
turnover due to altitude is 0.054 s.d. per centimetre. The change in altitude that
results in 0.041 s.d. species turnover is therefore 0.041/0.054 = 0.76 cm. An
approximate 95% confidence interval can be obtained for this ratio from the
standard error of cl and c2 and their covariance by using Fieller's theorem (Finney
1964). Here the covariance is about zero. In this way, we so obtained the interval
(0.4 cm, 1.1 cm).

Exercise 5.6.5 From Exercise 5.6.4, we would expect each particular species
composition to occur next year 0.76 cm lower than its present position. Uplift
(about 0.5 cm per year) is less; hence, there is no evidence that the vegetational
succession lags behind the land uplift. The known uplift falls within the confidence
interval given above. Further, because the value 0 cm lies outside the confidence
interval, the effect of uplift on species composition is demonstrated. Uplift
apparently drives the vegetational succession without lag.

Exercise 5.6.6 The length of the first axis is 4.4 s.d. From Exercise 5.6.3, we
know that each plot changes about 0.25 s.d. in 6 years. The change from vegetation
near the sea to vegetation at the edge of the forest therefore takes roughly (4.4/
0.25) X 6 years *** 100 years. The second axis is 0.9 s.d. and mainly represents
the differences in species composition between the two sampling occasions that
are unrelated to altitude and land uplift. More precisely, the canonical coefficient
of time on the second axis is -0.34/2.9 = -0.117. It therefore accounts for 0.117
X 6 s.d. = 0.70 s.d. of the length of the second axis, whereas time accounted
for 0.25 s.d. of the length of the first axis. There are apparently more changes
going on than can be accounted for by uplift.
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6 Cluster analysis

O.F.R. van Tongeren

6.1 Introduction

6.1.1 Aims and use

For ecological data, cluster analysis is a type of analysis that classifies sites,
species or variables. Classification is intrinsic in observation: people observe objects
or phenomena, compare them with other, earlier, observations and then assign
them a name. Therefore one of the major methods used since the start of the
study of ecology is the rearrangement of data tables of species by sites, followed
by the definition of community types, each characterized by its characteristic species
combination (Westhoff & vander Maarel 1978; Becking 1957). Scientists of different
schools have different ideas about the characterization of community types and
the borders between these types. In vegetation science, for instance, the Scan-
dinavian school and the Zurich-Montpellier school differ markedly, the Scan-
dinavians emphasizing the dominants and the Zurich-Montpellier school giving
more weight to characteristic and differential species, which are supposed to have
a narrower ecological amplitude and are therefore better indicators for the
environment. Cluster analysis is an explicit way of identifying groups in raw data
and helps us to find structure in the data. However even if there is a continuous
structure in the data, cluster analysis may impose a group structure: a continuum
is then arbitrarily partitioned into a discontinuous system of types or classes.

Aims of classification are:
- to give information on the concurrence of species (internal data structure)
- to establish community types for descriptive studies (syntaxonomy and map-

ping)
- to detect relations between communities and the environment by analysis of

the groups formed by the cluster analysis with respect to the environmental
variables (external analysis).

In Chapter 6, an introduction will be given to several types of cluster analysis.
This chapter aims at a better understanding of the properties of several methods
to facilitate the choice of a method, without pretending to show you how to
find the one and only best structure in your data. It is impossible to choose
a 'best' method because of the heuristic nature of the methods. If there is a markedly
discontinuous structure, it will be detected by almost any method, a continuous
structure will almost always be obscured by cluster analysis.
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6.1.2 Types of cluster analysis

There are several types of cluster analysis, based on different ideas about the
cluster concept. Reviews are found mainly in the taxonomic literature (Lance
& Williams 1967; Dunn & Everitt 1982). Here a brief summary will be given
of the main groups.

A major distinction can be made between divisive and agglomerative methods.
Divisive methods start with all objects (in ecology mostly samples; in taxonomy
operational taxonomic units, OTUs) as a group. First this group is divided into
two smaller groups, which is repeated subsequently for all previously formed groups,
until some kind of 'stopping rule' is satisfied. The idea of this way of clustering
is that large differences should prevail over the less important smaller differences:
the global structure of a group should determine the subgroups. Alternatively
agglomerative methods start with individual objects, which are combined into
groups by collection of objects or groups into larger groups. Here 'local' similarity
prevails over the larger differences. Divisive methods will be described in Section
6.3, and agglomerative methods in Section 6.2. Most agglomerative methods require
a similarity or dissimilarity matrix (site by site) to start from. Several indices
of (dis)similarity will be introduced in Subsection 6.2.3.

A second way of distinguishing methods is to classify them by hierarchical
and non-hierarchical methods. Hierarchical methods start from the idea that the
groups can be arranged in a hierarchical system. In ecology, one could say that
a certain difference is more important than another one and therefore should
prevail: be expressed at a higher hierarchical level. Non-hierarchical methods do
not impose such a hierarchical structure on the data. For data reduction, non-
hierarchical methods are usually used.

Non-hierarchical classification handles
- redundancy: sites that are much like many other sites are grouped without

considering the relations to other less similar sites
- noise: before subsequent hierarchical clustering, a 'composite sample' may be

constructed
- outliers, which can be identified because they appear in small clusters or as

single samples.

6.2 Agglomerative methods

6.2.1 Introduction

Agglomerative cluster analysis starts from single objects, which are agglomerated
into larger clusters. In many sciences, agglomerative techniques are employed much
more frequently than divisive techniques. The historical reason for this is the
inefficient way early polythetic divisive techniques used computer resources, while
the agglomerative ones were more efficient. Now, the opposite seems true.
Nevertheless, there is a very large range of agglomerative techniques, each
emphasizing other aspects of the data and therefore very useful.

All agglomerative methods share the idea that some kind of (dis)similarity
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function between (groups of) objects (usually sites) is decisive for the fusions.
Different methods, however, are based on different ideas on distance between
clusters. Within most methods, there is also a choice between different 'indices
of similarity or dissimilarity' (distance functions). Most of this section is devoted
to similarity and dissimilarity indices.

6.2.2 Similarity and dissimilarity

Grouping of sites and species in many ecological studies is a matter of personal
judgment on the part of the investigator: different investigators may have different
opinions or different aims; they therefore obtain different results. There are, however,
many different objective functions available with which to express similarity.

Ideally, similarity of two sites or species should express their ecological relation
or resemblance; dissimilarity of two sites or species is the complement of their
similarity. Since this idea of similarity includes an ecological relation, it is important
which ecological relation is focused upon - so the objectives of a study may help
to determine the applicability of certain indices. Most of the indices used in ecology
do not have a firm theoretical basis. My attitude towards this problem is that
practical experience, as well as some general characteristics of the indices, can
help us choose the right one. Numerous indices of similarity or dissimilarity have
been published, some of them are widely used, others are highly specific.

The aim of this section is to make the concepts of similarity and dissimilarity
familiar and to examine some of the popular indices. Although most indices can
be used to compute (dis)similarities between sites as well as between species, they
are demonstrated here as if the site is the statistical 'sampling unit'. Computations
of similarity can be made directly from the species-abundance values of sites or
indirectly, after using some ordination technique from the site scores on the
ordination axes. With indirect computation, dissimilarities refer to distances
between sites in the ordination space.

Comparison of sites on the basis of presence-absence data

If detailed information on species abundance is irrelevant for our problem or
if our data are qualitative (e.g. species lists), we use an index of similarity for
qualitative characters. The basis of all similarity indices for qualitative characters
is that two sites are more similar if they share more species and that they are
more dissimilar if there are more species unique for one of both (two species
are more similar if their distribution over the sites is more similar). One of the
earliest indices is the index according to Jaccard (1912). This Jaccard index is
the proportion of species out of the total species list of two sites, which is common
to both sites:

SJ — c/(a + b + c) Equation 6.1
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where
SJ is the similarity index of Jaccard
c is the number of species shared by the two sites
a and b are the numbers of species unique to each of the sites.

Often the equation is written in a different way:

SJ = c\ (A + B - c) Equation 6.2

where c is the number of species shared and A and B are the total numbers
of species for the samples: A — a + c and B — b + c).

Sorensen (1948) proposed another similarity index, often referred to as coefficient
of community (CC).

CC = 2c/ (A + B) or 2cI (a +b + 2c). Equation 6.3

Instead of dividing the number of species shared by the total number of species
in both samples, the number of species shared is divided by the average number
of species. Faith (1983) discusses the asymmetry of these indices with respect to
presence or absence.

Comparison of samples on the basis of quantitative data

Quantitative data on species abundances always have many zeros (i.e. species
are absent in many sites); the problems arising from this fact have been mentioned
in Section 3.4. Therefore an index of similarity for quantitative characters should
also consider the qualitative aspects of the data. The similarity indices in this
subsection are different with respect to the weight that is given to presence or
absence (the qualitative aspect) with regard to differences in abundance when
the species is present. Some of them emphasize quantitative components more
than others. Two of them are very much related to the Jaccard index and the
coefficient of community, respectively: similarity ratio (Ball 1966) and percentage
similarity (e.g. Gauch 1982). The other indices can easily be interpreted geomet-
rically.

The similarity ratio is:

SRfj = I* yki ykJl (2* ykl
2 + I , yk? - lk yki ykj) Equation 6.4

where yki is the abundance of the k-\h species at site /, so sites / andy are compared.
For presence-absence data (0 indicating absence and 1 presence), this can be
easily reduced to Equation 6.1, indicating that the Jaccard index is a special case
of the similarity ratio. For Sorensen's index, Equation 6.3, the same can be said
in respect to percentage similarity:

PSy = 200 2* min (ykh yk/)l(Zkyki + !,>>,,) Equation 6.5

177



Figure 6.1 Five sites (1-5) in a three-dimensional space of which the axes are the thre
species A, B and C. Site 1 is characterized by low abundance of species A and specie
C, and absence of species B. In site 2, species A is dominant, species B is less importan
and species C is absent. Sites 3 and 4 are monocultures of species B and C, respectivel)
Site 5 has a mixture of all three species.

where min (ykh ykj) is the minimum of yki and ykj.

Some indices can be explained geometrically. To explain these indices, it i
necessary to represent the sites by a set of points in a multi-dimensional spac
(with as many dimensions as there are species). One can imagine such a spac
with a maximum of three species (Figure 6.1) but conceptually there is no differenc
if we use more species (see Subsection 5.3.3).

The position of a site is given by using the abundances of the species as coordinate
(Figure 6.1), and therefore sites with similar species composition occupy nearb
positions in species space. The Euclidean Distance, ED, between two sites is a
obvious measure of dissimilarity:

ED — \J I,k (ykj - yk/)2 Equation 6.

Figure 6.1 shows that quantitative aspects play a major role in Euclidean Distance
the distance between Sites 1 and 2, which share one species, is much larger tha
the distance between Sites 1 and 3, not sharing a species.

More emphasis is given to qualitative aspects by not considering a site as
point but as a vector (Figure 6.2). Understandably, the direction of this vecto
tells us something about the relative abundances of species. The similarity o
two sites can be expressed as some function of the angle between the vector
of these sites. Quite common is the use of the cosine (or Ochiai coefficient):

= lk yki ykj Equation 6.

A dissimilarity index that is more sensitive to qualitative aspects than the Euclidea
Distance is the chord distance:
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Figure 6.2 The same space as in Figure 6.1. Samples are now indicated by vectors. Crosses
indicate where the sample vectors intersect the unit sphere (broken lines). Note that the
distance between 1' and 2 ' is much lower than the distance between either of them and
3'. The angle between sample vectors 1 and 3 is indicated by a.

[ykiIVk y*p - ykjICLk ykjff Equation 6.8

This chord distance is geometrically represented by the distance between the points
where the sample vectors intersect the unit sphere (Figure 6.2).

Conversion of similarity to dissimilarity and vice versa

For some applications, one may have to convert a similarity index into a
dissimilarity index. This conversion must be made if, for instance, no dissimilarity
index with the desired properties is available, but the cluster algorithm needs
an index of dissimilarity. For cluster algorithms merely using the rank order of
dissimilarities, any conversion reversing the rank order is reasonable, but care
must be taken for cluster algorithms that use the dissimilarities in a quantitative
way (as forming an interval or ratio scale (Subsection 2.4.2). We mention two
ways of making the conversion:

- subtracting each similarity value from a certain value: in this way the intervals
between the values are preserved. Bray & Curtiss (1957), for instance, subtract
similarity values from the expected similarity among replicate samples, the
so-called internal association. In practice, the best estimate of internal as-
sociation (IA) is the maximum similarity observed. Thus percentage similarity
is converted to percentage distance, PD, using this subtraction:

PD^ IA- PS Equation 6.9
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- taking the reciprocal of each similarity value. In this way, the ratios between
similarity values are preserved in the dissimilarity matrix.

6.2.3 Properties of the indices

Despite many studies (e.g. Williams et al. 1966; Hajdu 1982) addressing the
problem of which index should be used, it is still difficult to give a direct answer.
The choice of index must be guided by best professional judgment (or is it intuition?)
of the investigator, by the type of data collected and by the ecological question
that should be answered. Dunn & Everitt (1982) and Sneath & Sokal (1973) advise
to choose the simplest coefficient applicable to the data, since this choice will
generally ease the interpretation of final results.

However one can say a little bit more, though still not very much: the objectives
of a study may help in deciding which index is to be applied. The length of
the sampled gradient is important: the relative weight that is given to abundance
(quantity) should be larger for short gradients, the relative weight given to presence
or absence should be larger for long gradients (Lambert & Dale 1964; Greig-
Smith 1971). Other criteria that should be considered are species richness (Is it
very different at different sites?) and dominance or diversity of the sites (Are
there substantial differences between sites?). The easiest way of getting some feeling
for these aspects is to construct hypothetical matrices of species abundances and
see how the various indices respond to changes in different aspects of the data.
However this gives only an indication and one must be aware of complications
whenever more characteristics of the data are different between samples.

To demonstrate the major responses to dominance/diversity, species richness
and length of gradient a set of artificial species-by-site data, each referring to
one major aspect of ecological samples, is given, together with graphs, to indicate
the responses of the indices (Tables 6.1-6.4). To obtain comparable graphs (Figures

Table 6.1 Artificial species-by-sites table. Total abundance for each sample is 10, the number
of species (a-diversity) is lower on the right side and the 'evenness' is constant (equal scores
for all species in each sample).

Site

Species
A
B
C
D
E
F
G
H
I
J

i :

1.00
1.00 1
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

>

.11

.11

.11

.11

.11

.11
1.11
.11

1.11

3 '

1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25

[

.43

.43

.43

.43
1.43
1.43
1.43

5

1.67
1.67
1.67
1.67
1.67
1.67

6

2.00
2.00
2.00
2.00
2.00

7

2.50
2.50
2.50
2.50

8

3.33
3.33
3.33

9

5.00
5.00

10

10.00
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Figure 6.3 Standardized (dis)similarity (ordinate) between the first site and each of the other
sites in Table 6.1 in corresponding order on the abscissa. Note that squared Euclidean Distance
(ED2) is strongly affected by higher abundances, a: similarity indices, b: dissimilarity indices.

Table 6.2 Artificial species-by-sites table. Evenness and species number are
constant, the sample totals varying largely.

Site 10

Species
A
B
C
D
E
F
G
H
I
J

9
9
9
9
9
9
9
9
9
9

10
10
10
10
10
10
10
10
10
10

CC Jacc cos

Figure 6.4 Standardized (dis)similarity (ordinate) between the first site and each of the
other sites in Table 6.2 in corresponding order on the abscissa. Note that coefficient of
community (CC), Jaccard index (Jacc) and cosine are at their maximum for all sites compared
with the first site, a: similarity indices, b: dissimilarity indices.
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Table 6.3 Artificial species-by-sites table. Number of species (2) and total
abundance (10) are constant but the evenness varies.

Site 1

Species
A 1
B 9

X ^ \ Jacc

S R \

cc

Figure 6.5 Standardized (dis)similarity (ordinate) between the first site and each of the
other sites in Table 6.3 in corresponding order on the abscissa. Note the difference with
Figure 6.4: the cosine is not at its maximum value for other sites as compared to the
first site, a: similarity indices, b: dissimilarity indices.

Table 6.4 Artificial species-by-sites table. A regular gradient with equal
species numbers in the samples, equal scores for all species: at each 'step'
along the gradient one species is replaced by a new one.

Site

Species
A
B
C
D
E
F
G
H
I
J
K
L
M
N

1 2 5

1
1
1
1

1
1
1
1
1

1
1 1
1 1
1 1
1 1
1 1

1
1
1
1
1

1
1
1
1

1
1
1
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6.3-6.6), all indices are scaled from 0 to 1. Comparisons are always made between
the first site of the artificial data and the other sites within that table. The captions
to Tables 6.1-6.4 and Figures 6.3-6.6 give more information on the properties
of the artificial data. Table 6.5 summarizes the major characteristics of the indices
but it is only indicative.

1- 1-

all indices
ED2, PD

Figure 6.6 Standardized (dis)similarity (ordinate) between the first site and each of the
other sites in Table 6.4 in corresponding order on the abscissa. Except for Euclidean Distance
(ED) and Chord Distance (CD), all indices are linear until a certain maximum (or
minimum) is reached, a: similarity indices, b: dissimilarity indices.

Table 6.5 Characteristics of the (dis)similarity indices. The asterisk (*) indicates qualitative
characteristics. Sensitivity for certain properties of the data is indicated by: — not sensitive;
-f sensitive; + + and + + + strongly sensitive.

sensitivity to sample total
sensitivity to dominant species _
sensitivity to species richness —
similarity
dissimilarity
quantitative
qualitative
auuitviauuu

Similarity Ratio
Percentage Similarity
Cosine
Jaccard Index
Coefficient of Community
Cord Distance
Percentage Dissimilarity
Euclidean Distance
Squared Euclidean Distance

n
SR
PS
Cos
SJ
CC
CD
PD
ED
ED2
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6.2.4 Transformation, standardization and weighting

Transformation, standardization and weighting of data are other ways of letting
certain characteristics of the data express themselves more or less strongly. This
paragraph is meant to give you some idea of how certain manipulations can be
made with the data and what are the reasons for and the consequences of
transformations and standardizations.

Transformation

Transformations are possible in many different ways. Most transformations used
in ecology are essentially non-linear transformations: the result of such trans-
formations is that certain parts of the scale of measurement for the variables
are shrunk, while other parts are stretched.

Logarithmic transformation.
yfj = l°ge ytj or (if zeros are present) yj=loge (ytj + 1) Equation 6.10

This transformation is often used for three essentially different purposes:
- to obtain the statistically attractive property of normal distribution for log-

normally distributed variables (as in Subsection 2.4.4)
- to give less weight to dominant species, in other words to give more weight

to qualitative aspects of the data
- in environmental variables, to reflect the linear response of many species to

the logarithm of toxic agents or (in a limited range) to the logarithm of nutrient
concentrations. Instead o f '+1 ' , take the minimum non-zero value.

Square-root transformation.
y* = y^2 Equation 6.11

This transformation is used
- before analysis of Poisson-distributed variables (e.g. number of individuals

of certain species caught in a trap over time)
- to give less weight to dominant species.

Exponential transformation.
yif = ayiJ. Equation 6.12

If a is a real number greater than 1, the dominants are emphasized.

Transformation to an ordinal scale. The species abundances are combined into
classes. The higher the class number, the higher the abundance. A higher class
number always means a higher abundance, but an equal class number does not
always mean an equal abundance: intervals between classes are almost meaningless.
Dependent on the class limits, one can influence the results of a classification
in all possible ways. An extreme is the transformation to presence-absence scale
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(1/0). A transformation to ordinal scale always includes loss of information: if
continuous data are available any other transformation is to be preferred. However
it can be very useful to collect data on an ordinal scale (as is done in the
Zurich-Montpellier school of vegetation science) for reduction of the work in
the field.

Standardization

Several aspects of standardization have been treated in Subsection 2.4.4. Here
we discuss some other types of standardization that are used in cluster analysis.
Standardization can here be defined as the application of a certain standard to
all variables (species) or objects (sites) before the computation of the (dis)similarities
or before the application of cluster analysis. Possible ways of standardizing are
as follows.
Standardization to site total. The abundances for each species in a site are summed
and each abundance is divided by the total: in this way relative abundances for
the species are computed, a correction is made for 'size' of the site (total number
of individuals collected at the site or total biomass). Care should be taken if
these sizes are very different, because rare species tend to appear in large sites:
(dis)similarity measures that are sensitive to qualitative aspects of the data might
still be inappropriate.
Standardization to species total. For each species the abundances are summed
over all sites and then divided by the total. This standardization strongly over-
weights the rare species and down-weights the common species. It is therefore
recommended to use this standardization only if the species frequencies in the
table do not differ too much. This type of standardization can be applied when
different trophic levels are represented in the species list, because the higher trophic
levels are less abundant (pyramids of biomass and numbers).
Standardization to site maximum. All species abundances are divided by the
maximum abundance reached by any species in the site. This standardization
is applied for the same reason as standardization to site total. It is less sensitive
to species richness, but care should be taken if there are large differences in the
'evenness' of sites. If an index is used with a large weighting for abundance, sites
with many equal scores will become extremely different from sites with a large
range in their scores.
Standardization to species maximum. The reason for this standardization is that,
in the opinion of many ecologists, less abundant species (in terms of biomass
or numbers) should be equally weighted. As the standardization to species total,
this type of standardization is recommended when different trophic levels are
present in the species list. This standardization also makes data less dependent
on the kind of data (biomass or numbers or cover) collected.
Standardization to unit site vector length. By dividing the species abundance in
a site by the square root of their summed squared abundances, all end-points of
the site vectors are situated on the unit sphere in species-space. Euclidean Distance
then reduces to chord distance.
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Weighting

There are several reasons for weighting species or sites. Depending on the reason
for down-weighting several kinds of down-weighting can be applied.
Down-weighting of rare species. A lower weight dependent on the species
frequency, is assigned to rare species to let them influence the final result to a
lesser extent. This should be done if the occurrence of these species is merely
by chance and if the (dis)similarity index or cluster technique is sensitive to rare
species.
Down-weighting of species indicated by the ecologist. A lower weight is assigned
to species (or sites) that are less reliable (determination of a species is difficult;
a sample is taken by an inexperienced field-worker) or to species that are ecologically
less relevant (planted trees; the crop species in a field). This kind of down-weighting
is ad hoc and therefore arbitrary.

6.2.5 Agglomerative cluster algorithms

All agglomerative methods are based on fusion of single entities (sites) or clusters
(groups of sites) into larger groups. The two groups that closest resemble each
other are always fused, but the definition of (dis)similarity between groups differs
between methods.

Often the results of hierarchical clustering are presented in the form of a
dendrogram (tree-diagram, e.g. Figure 6.8). Such a dendrogram shows the relations
between sites and groups of sites. The hierarchical structure is indicated by the
branching pattern.

Single-linkage or nearest-neighbour clustering

The distance between two clusters is given by the minimum distance that can
be measured between any two members of the clusters (Figure 6.7). A dendrogram
of the classification of the Dune Meadow Data with single-linkage clustering,

Figure 6.7 Distances (solid lines) between clusters in single linkage: samples within the
same cluster are indicated with the same symbol.
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Figure 6.8 Dendrogram of single linkage, using the Dune Meadow Data and the similarity
ratio.

Figure 6.9 Hypothetical example of 'chaining', a problem occurring in single-linkage
clustering.

using similarity ratio, is given in Figure 6.8. The dendrogram shows us that there
are not very well defined clusters: our data are more or less continuous. Single-
linkage clustering can be used very well to detect discontinuities in our data.
For other research in community ecology, it is not appropriate because of its
tendency to produce straggly clusters, distant sites being connected by chains of
sites between them (Figure 6.9).
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Complete-linkage or furthest-neighbour clustering

In contrast to the definition of distance in single-linkage clustering, the definition
in complete-linkage clustering is as follows. The distance between two clusters
is given by the maximum distance between any pair of members (one in each
cluster) of both clusters (Figure 6.10). The dendrogram (Figure 6.11) suggests
clear groups but, as can be seen in Figure 6.8, this may be an artefact. The group
structure is imposed on the data by complete linkage: complete linkage tends
to tight clusters, but between-cluster differences are over-estimated and therefore
exaggerated in the dendrogram.

Figure 6.10 Distances (solid lines) between clusters in complete linkage: samples within
the same cluster are indicated with the same symbol.
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Figure 6.11 Complete-linkage dendrogram of the Dune Meadow Data using the similarity
ratio.
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Figure 6.12 Average-linkage dendrogram of the Dune Meadow Data using the similarity
ratio.

Average-linkage clustering

In average-linkage clustering, the between-group (dis)similarity is defined as
the average (dis)similarity between all possible pairs of members (one of each
group). This method is most widely used in ecology and in systematics (taxonomy).
The algorithm maximizes the 'cophenetic correlation', the correlation between
the original (dis)similarities and the (dis)similarities between samples, as can be
derived from the dendrogram. For any sample pair, it is the lowest dissimilarity
(or highest similarity) required to join them in the dendrogram (Sneath & Sokal
1973). As can be seen in the dendrogram of average linkage (Figure 6.12), this
method is intermediate between complete and single linkage. The preceding
explanation refers to UPGMA, the unweighted-pair groups method (Sokal &
Michener 1958). There are variants of this technique in which a weighted average
is computed (e.g. Lance & Williams 1967).

Centroid clustering

In centroid clustering, between-cluster distance is computed as the distance
between the centroids of the clusters. These centroids are the points in species
space defined by the average abundance value of each species over all sites in
a cluster (Figure 6.13). Figure 6.14 shows subsequent steps in centroid clustering.
For the Dune Meadow Data, the dendrogram (which is not presented) closely
resembles the average-linkage dendrogram (Figure 6.12).
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Figure 6.13 Between-cluster distances (solid lines) in centroid clustering: samples within
the same cluster are indicated with the same symbol; cluster centroids are indicated by
squares.

O A <>•<>

<>•<> o o
•

o

Figure 6.14 Subsequent steps in centroid clustering. Sites belonging to the same cluster
are indicated with the same open symbol. Cluster centroids are indicated by the corresponding
filled symbols. Upon fusion of two clusters, the symbols of sites change to indicate the
new cluster to which they belong.
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Ward's method or minimum variance clustering

Ward's method, also known as Orloci's (1967) error sum of squares clustering,
is in some respects similar to average-linkage clustering and centroid clustering.
Between-cluster distance can either be computed as a squared Euclidean distance
between all pairs of sites in a cluster weighted by cluster size (resembling average-
linkage clustering) or as an increment in squared distances towards the cluster
centroid when two clusters are fused (resembling centroid clustering). Penalty by
squared distance and cluster size makes the clusters tighter than those in centroid
clustering and average linkage, and more like those obtained in complete linkage.
The algorithm proceeds as follows: with all samples in a separate cluster, the sum
of squared distances is zero, since each sample coincides with the centroid of its
cluster. In each step, the pair of clusters is fused, which minimizes the total within-
group sum of squares (Subsection 3.2.1, residual sum of squares), which is equal
to minimizing the increment (d£) in the total sum of squares:

&E=Ep+q-Ep-Eq

where
E is the total error sum of squares
Ep+q is the within-group sums of squares for the cluster in which p and q are
fused together
Ep and Eq the sums of squares for the individual clusters p and q.

The within-group sum of squares for a cluster is:

where the first summation is over all members of cluster/? and the second summation
is over all species.

The dendrograms of Ward's clustering, average linkage and complete linkage
using squared Euclidean Distance are given in Figure 6.15.

6.3 Divisive methods

6.3.1 Introduction

Divisive methods have long been neglected. The reason for this is that they
were developed in the early years of numerical data analysis. At that time they
failed either because of inefficiency (too many computational requirements) or
because the classification obtained was inappropriate. Williams & Lambert (1960)
developed the first efficient method for divisive clustering: association analysis.
This method is monothetic: divisions are made on the basis of one attribute (e.g.
character or species). Although it is not used very often now, some authors still
use association analysis or variations of association analysis (e.g. Kirkpatrick et
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al. 1985). Subsection 6.3.2 briefly describes association analysis. Efficient polythetic
methods for divisive clustering appeared after Roux & Roux (1967) introduced
the partitioning of ordination space for purposes of classification. Lambert et
al. (Williams 1976b) wrote a program to perform a division based on partitioning
of the first axis of principal component analysis. A divisive clustering is obtained
by repeating this method of partitioning on the groups obtained in the previous
step. More recently, Hill (Hill et al. 1975; Hill 1979b) developed a method based
on the partitioning of the first axis of CA. Since this method has some remarkable
features and in most cases leads to very interpretable solutions it will be treated
in detail in Subsection 6.3.3.

6.3.2 Association analysis and related methods

Association analysis (Williams & Lambert 1959 1960 1961) starts selecting the
species that is maximally associated to the other species: association between species
is estimated as the qualitative correlation coefficient for presence-absence data,
regardless of its sign. For each species, the sum of all associations is computed.
The species having the highest summed association value is chosen to define the
division. One group is the group of sites in which the species is absent, the
other group is the group of sites in which the species is present. Because it is
sensitive to the presence of rare species and to the absence of more common
ones this method is not often used in its original form. Other functions defining
association, chi-square and information statistics have been proposed. These
functions produce better solutions. Groups obtained in monothetic methods are
less homogeneous than groups resulting from polythetic methods, because in the
latter case more than one character determines the division. Therefore if a polythetic
method is available it should always be preferred over a monothetic one (Coetzee
& Werger 1975; Hill et al. 1975).

6.3.3 Two Way INdicator SPecies ANalysis

This section deals with the method of Two Way INdicator SPecies ANalysis
(TWINSPAN). The TWINSPAN program by Hill (1979b) not only classifies the
sites, but also constructs an ordered two-way table from a sites-by-species matrix.
The process of clustering sites and species and the construction of the two-way
table are explained step by step to illustrate TWINSPAN's many features, some
of which are available in other programs too. However the combination of these
features in TWINSPAN has made it one of the most widely used programs in
community ecology.

Figure 6.15 Comparison of average linkage, complete linkage and Ward's method using
squared Euclidean Distance, a: average linkage, b: complete linkage, c: Ward's method.
The dendrograms for average linkage and complete linkage are similar. By the use of squared
Euclidean Distance, the larger distances have a higher weighting in average linkage. The
result of Ward's method is different from both other methods, even at the four-cluster
level.
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Pseudo-species

One of the basic ideas in TWINSPAN stems from the original idea in
phytosociology that each group of sites can be characterized by a group of
differential species, species that appear to prevail in one side of a dichotomy.
The interpretation of TWINSPAN results is, in this respect, similar to the
interpretation of a table rearranged by hand. Since the idea of a differential species
is essentially qualitative, but quantitative data must be handled effectively also,
Hill et al. (1975) developed a qualitative equivalent of species abundance, the
so-called pseudo-species (see Section 3.4). Each species abundance is replaced
by the presence of one or more pseudo-species. The more abundant a species
is, the more pseudo-species are defined. Each pseudo-species is defined by a
minimum abundance of the corresponding species, the 'cut level'. This way of
substituting a quantitative variable by several qualitative variables is called conjoint
coding (Heiser 1981). An advantage of this conjoint coding is that if a species'
abundance shows a unimodal response curve along a gradient, each pseudo-species
also shows a unimodal response curve (see Section 3.4), and if the response curve
for abundance is skewed, then the pseudo-species response curves differ in their
optimum.

Making a dichotomy; iterative character weighting

A crude dichotomy is made by ordinating the samples. In TWINSPAN, this
is done by the method of correspondence analysis (Hill 1973; Section 5.2) and
division of the first ordination axis at its centre of gravity (the centroid). The
groups formed are called the negative (left-hand) and positive (right-hand) side
of the dichotomy. After this division the arrangement is improved by a process
that is comparable to iterative character weighting (Hogeweg 1976) or to the
application of a transfer algorithm (Gower 1974) that uses a simple discriminant
function (Hill 1977). What follows is an account of this process of iterative character
weighting in some more details; the reader may skip the rest of this passage at
first reading.

A new dichotomy is constructed by using the frequencies of the species on
the positive and negative sides of the first, crude dichotomy: differential species
(species preferential for one of the sides of the dichotomy) are identified by
computing a preference score. Positive scores are assigned to the species with
preference for the positive side of the dichotomy, negative scores for those
preferential for the negative side. An absolute preference score of 1 is assigned
to each pseudo-species that is at least three times more frequent on one side
of the dichotomy as on the other side. Rare pseudo-species and pseudo-species
that are less markedly preferential are down-weighted. A first ordering of the
sites is obtained by adding the species preference scores to each other as in PCA
(Chapter 5, Equation 5.9). This weighted sum is standardized so that the maximum
absolute value is 1. A second ordering is constructed by computing for each site
the average preference scores (similar to the computation of weighted averages
in correspondence analysis (Chapter 5, Equation 5.2)) without down-weighting
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of the rare species. In comparison to the first ordering, this one polarizes less
strongly when there are many common (non-preferential) species, which is to
be expected at the lower levels of the hierarchy. At the higher levels of the hierarchy
it polarizes more strongly than the first ordination because more rare species
can be expected at the higher levels. Hill's preference scores have a maximum
absolute value of 1, so the scores for the sites in this second ordering range from
— 1 to 1. The scores in both orderings are added to each other and this so-called
refined ordination is divided at an appropriate point near its centre (see Hill 1979b).
The refined ordination is repeated using the refined classification. With the
exception of a few 'borderline' cases, this refined ordination determines the
dichotomy. For borderline cases (sites that are close to the point where the refined
ordination is divided), the final decision is made by a third ordination: the indicator
ordination. The main aim of this indicator ordination is, however, not to assign
these borderline cases to one of the sides of the dichotomy, but to reproduce
the dichotomy suggested by the refined ordination by using simple discriminant
functions based on a few of the most highly preferential species.

Hill (1979b) warns of confusion arising from the terms 'Indicator Species
Analysis' in TWINSPAN's name, because indicator ordination is an appendage,
not the real basis, of the method. He suggests the name 'dichotomized ordination
analysis' as a generic term to describe a wide variety of similar methods (e.g.
the program POLYDIV of Williams (1976b)). The indicator species (the set of
most highly preferential species that reproduce as good a refined ordination as
possible) can be used afterwards in the field to assign a not-previously-sampled
stand to one of the types indicated by TWINSPAN.

The construction of a species-by-sites table

For the construction of a species-by-sites table two additional features are
necessary. First, the dichotomies must be ordered and, second, the species must
be classified. The order of the site groups is determined by comparison of the
two site groups formed at any level with site groups at two higher hierarchical
levels. Consider the hierarchy in Figure 6.16. Assume that the groups 4, 5, 6
and 7 have already been ordered. The ordering of subsequent groups is now decided
upon. Without ordering we are free to swivel each of the dichotomies, and therefore

8 9 10 11 12 13 14 15

Figure 6.16 TWINSPAN dichotomy; cluster numbers are the numbers used by TWINSPAN.
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Table 6.6 TWINSPAN table of the demonstration
samples. Options are default TWINSPAN options,
except the cut levels, which are 1, 2, 3, ... 9. Zeros
and ones on the right-hand side and at the bottom
of the table indicate the dichotomies.

1111 1 111112
17895670123489234560

3 Rir pra .2.3 00000
12 Emp nig ... 2 00000
13 Hyp rad 22.5 00000
28 Vic Lat 2. 1.... 1 00000
5 Rnt odo .4.44324 00001
18 Pie Lan 323.5553 00010
1 Rch mil .2. .222413 000110

26 Tri pra 252 000110
6 Bel per ..2.2..2.322 000111
7 Bro hor 2.24.4.3 000111
9 Cir arv 2 000111
11 Ely rep ....4...4444.6 001
17 Lol per 7.2.2666756542 001
19 Poa pra 413.2344445444.2 001
23 Rum ace .... 563 22 001
16 Leo aut 52563333.522322222.2 01
20 Poa tri ....645427654549..2. 01
27 Tri rep 3.222526.521233261.. 01
29 Bra rut 4.632622..22224..444 01
4 Rio gen 2725385. .4. 10
24 Sag pro 2. .3 52242 10
25 Sal rep . .33 5 10
2 Rgr sto 4843454475 110
10 Ele pal 4. . .4584 11100
21 Pot pal 22. . 11100
22 Ran f La 2. .22224 11100
30 Cal cus 4.33 11100
14 Jun art 44.. .334 11101
8 Che alb 1 1111
15 Jun buf 2 443.... 1111

00000000000011111111
00001111111100001111

00001111

this hierarchical structure only indicates that 8 should be next to 9, 10 next to
11, etc. The groups (e.g. 10 and 11) are ordered 11, 10 if group 11 is more similar
to group 4 than group 10 and also less similar to group 3 than group 10. The
ordering 10, 11 is better when the reverse holds. In this way, the ordering of
the dichotomy is determined by relatively large groups, so that it depends on
general relations more than on accidental observations.

After completing the site classification the species are classified by TWINSPAN
in the light of the site classification. The species classification is based on fidelity,
i.e. the degree to which species are confined to particular groups of sites. In other
aspects the classification of the species closely resembles the site classification.
A structured table is made from both classifications by ordering the species groups
in such a way that an approximate 'positive diagonal' (from upper left to lower
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right) is formed. A TWINSPAN table of the Dune Meadow example is given
in Table 6.6.

6.4 Non-hierarchical clustering

A non-hierarchical clustering can be constructed by selecting sites to act as
an initial point for a cluster and then assigning the other sites to the clusters.
The methods vary in details. Gauch (1979) starts picking up a random site and
clusters all sites within a specified radius from that site. COMPCLUS, as his
program is called (composite clustering), repeats this process until all sites are
accounted for. In a second phase, sites from small clusters are reassigned to larger
clusters by specifying a larger radius. Janssen (1975) essentially proposes the same
approach but picks up the first site from the data as initiating point for the first
cluster. This method is applied in CLUSLA (Louppen & van der Maarel 1979).
As soon as a site lies further away from the first site than specified by the radius,
this site is the initiating point for the next cluster. Subsequent sites are compared
to all previously formed clusters. In this way there is a strong dependence on
the sequence in which the sites enter the classification. A second step in CLUSLA
is introduced to reallocate the sites to the 'best' cluster. This is done by comparing
all sites with all clusters: if they are more similar to another cluster then to their
parent cluster at that moment, they are placed in the cluster to which they are
most similar. In contrast to COMPCLUS, not only within-cluster homogeneity,
but also between cluster distances are used by CLUSLA. A method combining
the benefits of both methods is used in FLEXCLUS (van Tongeren 1986). From
the total set of sites a certain number is selected at random or indicated by the
user. All other sites are assigned to the nearest of the set. By relocation until
stability is reached, a better clustering is achieved. Outliers are removed by reduction
of the radius of the clusters afterwards. Variations of these methods are numerous;
others have been presented by, for example, Benzecri (1973), Salton & Wong
(1978) and Swain (1978).

Although hierarchical clustering has the advantage over non-hierarchical clus-
tering that between-group relations are expressed in the classification, there is
no guarantee that each level of the hierarchy is optimal. A combination of
hierarchical and non-hierarchical methods can be made by allowing sites to be
relocated, to improve clustering. Since clusters change by relocations, this can
be repeated in an iterative process until no further changes occur.

If there is a clear group structure at any level of the hierarchy, no relocations
will be made. An example of such a method is relocative centroid sorting. This
method is demonstrated in Figure 6.17. Because of the possibility of relocations,
a dendrogram cannot be constructed. By using relocative centroid sorting in a
slightly different way - assigning each site to a cluster at random or by a sub-
optimal, quick method - as shown in Figure 6.17, computing time can be saved
because computation of a site-by-site (dis)similarity matrix can be replaced by
computation of a site-by-cluster matrix. This is used in the table rearrangement
program TABORD (van der Maarel et al. 1978), and also in CLUSLA (Louppen
& van der Maarel 1979) and FLEXCLUS (van Tongeren 1986).
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AA

Figure 6.17 Three steps in relocative centroid sorting, a: arbitrary initial clustering, b: after
relocation, c: after fusion of the most similar clusters. Samples in the same cluster are
indicated by the same open symbol.The corresponding closed symbols indicate the cluster
centroids.

6.5 Optimality of a clustering

It is difficult to decide which solution of the cluster analysis to choose. There
are very different criteria used to do so: one can distinguish between external
and internal criteria.

External criteria are not dependent on the method of clustering. Other data
are used to test whether the clustering result is useful.
- In syntaxonomy (Westhoff & van der Maarel 1978), we look for sufficient

differences in floristic composition to be able to interpret the results, for instance
within the meaning of syntaxa, characteristic and differential species.

- In synecology, if we only used the information on the species composition
for our clustering, we have the possibility to test for differences in other variables
between the clusters (e.g. analysis of variance for continuous data or chi-square
test for nominal variables, cf. Subsection 3.3.1).

- In survey mapping, we can have restrictions on the number of legend units,
dependent on scale and technical facilities.

Internal criteria are dependent on the data used for obtaining the clustering
and usually also the method of clustering. There are almost as many methods
to decide which cluster method or which hierarchical level is best as there are
methods for clustering. Some of these methods use statistical tests, but usually
it would be better to use the word pseudo-statistics: the conditions for application
of the tests are never satisfied because the same characters that are used to group
the data are used to test for differences. Most other methods (a review can be
found in Popma et al. 1983) use two criteria for the determination of the optimum
solution:

- Homogeneity of the clusters (average (dis)similarity of the members of a cluster
or some analogue).

- Separation of the clusters (average (dis)similarity of each cluster to its nearest
neighbour, or some analogous criterion).
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There are many possible definitions of homogeneity and separation of clusters,
and each definition might indicate another clustering as the best one. The use
of methods to determine the optimum clustering should therefore be restricted
to evaluation of subsequent steps in one type of analysis (Hogeweg 1976; Popma
et al. 1983).

6.6 Presentation of the results

Results of a classification can be presented in different ways. We have already
mentioned:
- the species-by-sites table, giving as much information as possible on all separate

sites and species abundances. In vegetation science, additional environmental
information and information on the number of species in a site is usually
provided in the head of the table.

- The dendrogram, a representation in which the hierarchical structure of the
site groups is expressed.

When there are many sites, a species-by-sites table becomes quite large and
it is not very easy to interpret the table. This is the reason for the construction
of a so-called synoptical table. A synoptical table summarizes the results for each
cluster. Classical synoptical tables in the Braun-Blanquet school of vegetation
science present a presence class and minimum and maximum values for cover/
abundance in each vegetation type for all species. Table 8.3 is an example of
such a table. In Table 8.3 the presence classes I to V represent within cluster
species frequencies (0-20, 20-40, 40-60, 60-80, 80-100%, respectively). Many other
ways of presenting the summarized data in a synoptical table are possible. For
example, one can form cross-tabulations of species groups by clusters, or instead
of presence class and minimum and maximum scores, average values and standard
deviations can be entered into the table.

A dendrogram and a species-by-sites table cannot be used for presentation in
more than one dimension. Therefore it can be very useful to present the results
of the classification in an ordination diagram of the same set of sites. In such
a diagram, more complex relations with the environment can be clearly elucidated
(cf. Figure 8.7).

6.7 Relation between community types and environment

The relation between community types as they are defined by cluster analysis
on the basis of species data and their environment can be explored in several
ways. A hierarchical classification can be evaluated at each level: at each dichotomy,
a test can be done for differences between the two groups or all clusters at a
certain level are evaluated simultaneously. In a non-hierarchical classification we
are restricted to simultaneous comparison of all resulting clusters.The range of
methods goes from exploratory analysis (Subsection 6.7.1) to statistical tests of
significance (Subsection 6.7.2).
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Table 6.7 FLEXCLUS table, similarity ratio, centroid sorting with relocations. Sample 1,
which formed a separate cluster, is added to the second cluster by hand. Environmental data
are summarized and added to the table.

Sites:

Leo aut
Bra rut
Tri rep
Rgr sto
Rch mil
Rnt odo
Pla lan
Poa pra
LoL per
Bel per
Ely rep
Alo gen
Poa tri
Sag pro
Jun buf
Jun art
Cal cus
Ele pal
Ran fLa
Rir pra
Bro hor
Hyp rad
Pot pal
Rum acze
5al rep
Tri pra
Vic lat
Che alb
Cir arv
Emp nig

11 1 11
79617085

26353353
3942262
2532622

2 2 24 2
443 24 4
2 535335
1 344432
676622

222
4

4 54 6
3 2

23
24 2

25 2

6 3 5
3 3
5 2 2
2 11

2

123489

52232
2222
52123
4843

13

44544
75642
322
4444 6
27253
276545

522
4

•44

4
2

4 3

2

2

Environmental parameters

Dept R1
mean
s.d.
% HF
% NM

Moisture
cl 1
cl 2
cl 3
cl 4
cl 5

Manure
cL 1
cl 2
cL 3
cL 4

4.0
1.1

38
38

*****
**

*****
**
*

3,6
0.6
33
0

**

*
*

*
*
*
***

11
23

45
4
32
45

2

85
49
42
41

2

2

1112
4560

4475
444
61
4475

4
2

4 'J'J
4584
2224

22

5

5.9
0.1
0
0

*
*

*

7.5
3.6
0
75

****

*
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6.7.1 The use of simple descriptive statistics

For a continuous variable, mean and standard deviation can be computed for
each cluster, if there is no reason to expect outliers or skewed distributions. For
skewed distributions the alternative is to inspect the median and the mid-range,
or range for each cluster. Table 6.7 gives means and standard deviations for the
depth of the Al soil horizon. There seems to be a weak relation between the
clusters and the depth of the A1 horizon. A good alternative for continuous variables
is the construction of stem and leaf diagrams for each cluster separately.

For ordinal and nominal variables, such as moisture class and fertilization class
in the Dune Meadow Data, the construction of histograms give us quick insight
into the relations. Table 6.7 clearly shows that moisture might be the most important
environmental variable affecting the species composition. For nominal variables,
frequencies or within cluster proportions of occurrence might also give insight
in the relations. The proportion of plots managed by the Department of Forests,
the Dutch governmental institution administering the country's nature reserves
is, for instance, high in cluster 4, which are the nutrient-poor meadows.

In the preceding subsections, all variables have been evaluated separately and
on one hierarchical level. A different, quick way to evaluate all levels of a hierarchical
classification in the light of all appropriate environmental variables is the use
of simple discriminant functions for each dichotomy as performed by DISCRIM
(ter Braak 1982 1986). In the DISCRIM method, simple discriminant functions
are constructed in which those environmental variables are selected that optimally
predict the classification. Figuie 6.18 shows the TWINSPAN classification of the
sites (Table 6.6) in the form of a dendrogram and it shows at each branch the
most discriminating variables selected by DISCRIM.

1(12) moisture class 3+ 8(8)

0(4) manure class 2+ 7(8) 0(4) NM 3(4)

3(4) hobby 0(4)

Figure 6.18 This is the same TWINSPAN site classification as in Table 6.6, but now presented
as a dendrogram. At each branch the most discriminating variables, selected by DISCRIM,
are shown. Numbers at the branches indicate the number of sites for which the conditions
are true. Numbers in brackets indicate the number of sites in the clusters.
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6.7.2 The use of tests of significance

Tests of significance are introduced in Chapter 3, Section 3.2. To test whether
any environmental variable might be controlling the species composition (or might
be controlled by the species composition, or simply related to the species
composition) in the communities, we take as null hypothesis that the species
composition is independent from the environmental variable. Rejecting the null
hypothesis indicates that the environmental variable is related to the species
composition of our community types in some way or another.

Analysis of variance

Analysis of variance is explained in Subsection 3.2.1. It can be used to detect
relations between community types and continuous environmental variables. The
systematic part consists of the expected values of the environmental variable,
one for each community type and the error part is the variation in the values
within each community type. Analysis of variance is based on the normal
distribution. Therefore environmental variables must often be transformed, e.g.
by using the logarithm of their values (see Subsection 2.4.4).

Chi-square test

Subsection 3.3.1 describes the chi-square test for r x k contingency tables. The
chi-square test is used to test the null hypothesis: that a nominal environmental
variable is not related to the community types. Care should be taken if the numbers
of data are small or if the frequency of occurrence of the nominal variable is
low (see Subsection 3.3.1).

The rank sum test for two independent samples

Analysis of variance and the / test (cf. Subsection 3.2.1) are not very resistant
to outliers, because they are very much affected by gross errors in the observations.
An alternative is to use a distribution-free method, like the rank sum test for
two independent samples. As its name indicates, this test, developed by Wilcoxon,
but also known as the Mann-Whitney test, can be used to test for differences
between two groups. The test is described below.

All observations in both groups are put into a single array in increasing order
(indicating also from which group they are) and rank numbers are given to the
observations (the smallest observation has rank number 1). Tied observations
(equal values) are given their average rank number. For equal sample sizes the
smallest sum of rank numbers of both groups is directly referred to a table for
the Mann-Whitney test. For unequal sample sizes the sum of the rank numbers
is computed for the smallest sample (T{). A second T(T2) is computed:
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where n] and n2 are the sizes of the smaller and the larger sample, respectively.

The test criterion T is the smaller of Tx and T2. For sample sizes outside the
limits of the table, an approximate normal deviate Z is referred to the tables
of the normal distribution to obtain the significance probability P:

Z = ( | u - T | - 0 . 5 ) / a

where |i = («,-f«2+l)/2 and a =

With this test two small groups (minimum sizes of 4 and 4, 3 and 5 or 2 and
8) can be compared without any assumption on the distribution of the envir-
onmental variable. For further details on this test and other tests of significance
refer to a statistical handbook (e.g. Snedecor & Cochran 1980).

6.8 Bibliography

Scientific classification of communities can be traced back in history to von
Humboldt (1807): he used associations of plants to define community types. Jaccard
(1912) took the first step in the direction of multivariate analysis by the development
of his index of similarity. Many years later he was followed by Sorensen (1948),
who developed his 'method of establishing groups of equal amplitude in plant
sociology' based on similarity of species content. The increasing access scientists
have had to computers over the last thirty years has led to rapid developments
in multivariate methods. An early work that is devoted to the use of multivariate
methods in taxonomy is a book written by Sokal & Sneath (1963). In the late
sixties, and 1970s there was a rapid increase in the use of cluster analysis (and
ordination) by ecologists. Pielou (1969), Goodall (1970) and Williams (1976a)
give a theoretical background to these methods.

Numerical classification in the phytosociological context is elucidated by Goodall
(1973) and Mueller-Dombois & Ellenberg(1974). Everitt (1980) and Dunn & Everitt
(1982) are more recent introductions to numerical taxonomy. Gauch (1982) gives
an introduction to classification of communities and mentions many applications
of cluster analysis.
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6.9 Exercises

Exercise 6.1 Single-linkage clustering with Jaccard similarity

Exercise 6.1a Compute the Jaccard similarities for the sites in the artificial species-
by-site table given below. Since the similarities are symmetrical and the diagonal
elements all equal 1, you should only compute the elements below the diagonal
of the site-by-site similarity matrix (cf. Exercise 6.1c for the species).

Site

Species A
B
C
D
E
F
G

1

1
2

1

2

4

1
1
3
1

3

1

1

1
3

4

1

4
1

5

2

1

1

6

2

5
3

Exercise 6.1b Perform single-linkage clustering for the sites.

Exercise 6.1c The species similarities are:

B
C
D
E
F
G

A

0
0
0.60
0.40
0.60
0.60

B

0
0
0.33
0.25
0

C

0.25
0
0
0.25

D

0.17
0.33
1.0

E

0.
0.

75
17

F

0.33

Perform single-linkage clustering for the species.

Exercise 6.1d Rearrange the sites and the species to represent the hierarchical
structure. Try also to obtain the best possible ordering.
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Exercise 6.2 Complete-linkage clustering with percentage similarity

Exercise 6.2a Compute the missing elements (denoted by *) of the site-by-site
similarity matrix (percentage similarity) for the table of Exercise 6.1a.

2
3
4
5
6

1

29
40
0

50
0

2

*
25
58
60

3

17
60
*

4

*
63

5

29

Exercise 6.2b Perform complete-linkage clustering for all sites.

Exercise 6.3 Single-linkage clustering with Euclidean Distance

Exercise 6.3a Compute the missing elements (denoted by*) of the site-by-site
Euclidean Distance matrix for the table of Exercise 6.1a.

2
3
4
5
6

1

5.3
*
4.9
2.5
6.3

2

4.2
5.7
3.8
4.7

3

5
2
6

.3

.5

.3

4 5

4.9
2.5 *

Exercise 6.3b Perform single linkage and try to find out why the result is so
different from Exercise 6.1.

Exercise 6.4 Divisive clustering

This exercise is a demonstration of a simple classification procedure using a
divisive strategy with iterative character weighting (this procedure is different from
the procedures used in TWINSPAN and by Hogeweg (1976)). The species-by-
sites table of Exercise 6.1 is used here too.

Step a Divide the sites in two groups, a positive and a negative one. You may
choose a random division or monothetic division based on the presence of one
species. In the solution we intially place Sites 1,3 and 6 in the negative group
and Sites 5,2 and 4 in the positive group.

Step b Compute the sum of abundances for each species for both sides of the
dichotomy (SPOS for the positive scores, SNEG for the negative scores).
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Step c Compute a preference score for each species: pref = (SPOS—SNEG)/
(SPOS+SNEG).

Step d Compute a weighted sum (or weighted average) of the species abundances
for each site.

Step e Find maximum and minimum site score (MAX and MIN) and the midpoint
of the site scores (MID = (MAX+MIN)/2).

Step f Assign all sites with a score less than the midpoint to the 'negative' group
and all the other sites to the 'positive' group.

Step g Repeat steps b-f until the division is stable.

Step h Repeat steps a-g for each subgroup.

Exercice 6.5 Cluster interpretation with nominal environmental data

Do the chi-square test for moisture classes 1 and 2 combined, and 3, 4, and
5 combined, for:

Exercise 6.5a The first division of TWINSPAN (Table 6.6)

Exercise 6.5b The first three clusters of Table 6.7 combined and the last cluster
(highest hierarchical level). What is your null-hypothesis? Has it to be rejected
or not? Is it correct to use the chi-square test in this case?

Exercise 6.6. Cluster interpretation with ordinal environmental data

Perform Wilcoxon's test for 'Depth of AT for the first division of TWINSPAN
(Table 6.6).
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6.10 Solutions to exercises

Exercise 6.1 Single-linkage clustering with Jaccard similarity

Exercise 6.1a The number of species per site (A) and the values of c and
(A+B-c) in the notation of Subsection 6.2.2 are given below:

Site number 1

A (or B)

c

{A+B-c)

3

2: 2
3: 2
4: 0
5: 2
6: 0

2: 6
3: 5
4: 6
5: 4
6: 6

Jaccard similarity is <

2

5

4
2
3
3

5
6
5
5

3

4

1
3
2

6
4
6

Dbtained by

4

3

0
2

6
4

5 6

3 3

1

5

dividing
corresponding elements of the tables: c and (A-\~B-c)

Jaccard 2
3
4
5
6

1

0.33
0.40
0.00
0.50
0.00

2

0.80
0.33
0.06
0.60

3

0.17
0.75
0.40

4

0.00
0.50

5

0.20

Exercise 6.1b In order to obtain the single-linkage clustering we only have to
find the highest remaining similarity as demonstrated in the following table:

Fusion

1
2
3
4
5

Highest similarity

0.80
0.75
0.60
0.50
0.50

Between sites

2,3
3,5
2,6
1,5
4,6

Clusters fused

2,3
(2,3),5
(2,3,5),6
1,(2,3,5,6)
(1,2,3,5,6),4
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Exercise 6.1c

Fusion

1
2
3
4
5
6

Highest similarity

1.0
0.75
0.60
0.60
0.33
0.25

Between species

D,G
E,F
A,D
A,F
B,E
C,D

Clusters fused

D,G
E,F
A,(D,G)
(A,D,G),(E,F)
(A,D,E,F,G),B
(A,B,D,E,F,G),C

Exercise 6. Id The hierarchy can be represented in a dendrogram in which each
dichotomy can be swivelled. In order to obtain the best possible ordering each
site is placed next to its nearest neighbour.

2 next to 3:
5 next to 3:
6 next to 2:
1 next to 5:
4 next to 6:
or the reverse

2
2
6
6
4
1

3
3
2
2
6
5

5
3
3
2
3

5
5
3
2

1
5
6

1
4

If we use the same procedure for the species, there is a problem for species C.

D next to G: D G or G D
E next to F: E F or F E
A next to D: A D G or G D A
A next to F i E F A D G o r G D A F E
B next to E: B E F A D G o r G D A F E B
C between A and D is not a good solution because A resembles D much more
than C does.
C next to G is better, but still there are two possibilities, C between D and G
or C at the end. Because C resembles A less than D and G do, C is placed
at the end of the ordering:
B E F A D G C o r C G D A F E B

The rearranged table:

c
G
D
A
F
E
B

1
1
1
2

5

1
1
2

3

3
1
1
1

2

1
1
4
3
1

6

2
3
5

4

1
4
1
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Exercise 6.2 Complete linkage clustering with percentage similarity

Exercise 6.2a Computation of the similarities:

PS2 3: Sum of scores site 2: 10
Sum of scores site 3: 6
Minimum scores: A = 1, B = 0, C = 0, D = 1, E = 0, F = 1, G = 1
Sum of minimum scores: c = 1+0+0+1+0+1+1 = 4
PS23 = 200X4/(10+6) = 50

PS36: c =1+0+0+0+0+1 = 2
PS3?6 = 200X2/(6+10) = 25

PS4 5: no common species: c = 0 PS4 5 = 0

The complete similarity matrix is now:

2
3
4
5
6

1
29
40
0
50
0

2

50
25
58
60

3

17
60
25

4

0
63

5

29

Exercise 6.2b The first step is the same as with single linkage: the two most
similar samples are fused. Then we construct a new similarity matrix:

fusion 1:4 and 6, similarity 63

1 2 3 (4,6)
2 29
3 40 50

(4,6) 0 25') 17")
5 50 58 60 0'")

Note: ')min (25,60) = 25
")min (17,25) = 17
'")min ( 0,29) = 0

Fusion 2: 5 and 3, similarity 60

new similarity matrix:
1 2 (3,5)

2 29
(3.5) 40') 50")
(4.6) 0 25
Note: ') min (40,50) = 40

") min (50,58) = 50
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Fusion 3: 2 and (3,5), similarity 50

new similarity matrix:
1 (2,3,5)

(2,3,5) 29
(4,6) 0 0

Fusion 4: (2,3,5) and 1, similarity 29

last fusion: (1,2,3,5) and (4,6), similarity 0

Exercise 6.3 Single-linkage clustering with Euclidean Distance

Exercise 6.3 a

ED, 3 = [(0-l)2+(0-0)2+(l-0)2+(2-l)2+ (0-0)2 +(0-l)2+(l-3)2]1/2

ED5 6 = [(2-0)2+(0-0)2+(0-5)2+(0-3)2+ (1-0
' !/2

Exercise 6.3b Instead of looking for the highest similarity values, we look for
the lowest dissimilarity values.

Fusion

1
2
3
4
5

Dissimilarity

2.5
2.5
2.5
4.2
4.7

Between sites

1,5
3,5
4,6
2,3
2,6

Clusters fused

1,5
(1,5),3
4,6
(1,3,5),2
(1,2,3,5),(4,6)

Now Sites 4 and 6 group together because of the dominance of Species E. Sites
2 and 3 are more different and fuse therefore later, because of the different
abundances for Species A, F and G. Sites 1 and 5 are fused first, because of
their low species abundances, and so on.
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Exercise 6.4 Divisive clustering

Steps a-g The species-by-sites table (Table 6.8) is rearranged according to the
solution from Exercise 6.1.

Table 6.8 Species-by-sites table rearranged according to the solution for Exercise 6.1, with
SPOS, SNEG and PREF computed in Steps b and c of the iteration algorithm of Exercise 6.4.

1
1 1
2 1

2

3
1
1
1

1
1
4
3
1

2
3
5

1
4
1

step 1

SPOS

0
2
2
6
4
5
1

b

SNEG

1
4
3
3
4
5
0

step 1 c

PREF

-1
-0.33
-0.20

0.33
0
0
1

step 2

SPOS

0
2
2
8
7

10
1

b

SNEG

1
4
3
1
1
0
0

step 2 c

PREF

-1
-0.33
-0.20
0.78
0.75
1
1

step 3

SPOS

0
1
1
6
7

10
1

b

SNEG

1
5
4
3
1
0
0

step 3 c

PREF

-1
-0.67
-0.75
0.33
0.75

1
1

Step la Initial choice: Sites 1, 3 and 6 in the negative group; Sites 2, 4 and 5 in the
positive group.

Step lb- lc See Table 6.8.
Step Id For Sites 1-6 the weighted sums of the preference scores are —1.73, 0.79,

-0.86, 1, 0.13 and 0.66, respectively.
Step le MID = (-1.73 + l)/2 = -0.36.
Step If Sites 1 and 3 in the negative group; the other sites in the positive group.
Step 2b-2c See Table 6.8.
Step2d For Sites 1-6 the weighted sums are -1.73, 5.84, 0.34, 5.75, 1.03 and 8.81,

respectively.
Step 2e MID = (-1.73 + 8.81)/2 = 3.56.
Step 2f Sites 1, 3 and 5 in the negative group; the other sites in the positive group.
Step 3b-3c See Table 6.8.
Step 3d For Sites 1-6 the weighted sums are -3.17, 2.15, -1.68, 5.75, -0.76 and 7.91,

respectively.
Step 3e MID = (-3.17 + 7.91)/2 = 2.37.
Step 3f Same as Step 2f, so the classification is stable now.

Step h This is solved in essentially the same way for further subdivisions.

Exercise 6.5 Cluster interpretation with nominal environmental data
We start by making two-way cross-tabulations of the observed frequencies (o):

TWINSPAN (Table 6.6) FLEXCLUS (Table 6.7)

Cluster number:
Moisture class: 1+2

3+4+5
Total:

0
11
1

12

1
0
8
8

total
11
9

20

1+2+3
11
5

16

4
0
4
4

total
11
9

20
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The expected cell frequencies can be obtained by dividing the product of the
corresponding row and column totals by the overall total, e.g. (11X12)/2O =
6.6 (first cell of the TWINSPAN' table) The two-way cross-tabulation of the
expected cell frequencies (e) becomes:

Cluster number:
Moisture class: 1+2

3+4+5
Total:

0
6.6
5.4
12

1
4.4
3.6

8

total
11
9

20

1+2+3
8.8
7.2
16

4
2.2
1.8

4

total
11
9

20

For a two-by-two table all deviations from the expected values are equal (check
this for yourself): o-e = 4.4 and (o-e)2 = 19.36 (TWINSPAN), o-e = 2.2 and
(o-e)2 = 4.84 (FLEXCLUS, highest level).
X2= 19.36(1/6.6+1/4.4+1/5.4+1/3.6)= 16.30 (TWINSPAN)

X2 = 4.84(1/8.8+1/2.2+1/7.2+1/1.8) = 6.11 (FLEXCLUS, highest level).

Our null hypothesis is that the classification is not related to moisture class. We
have 1 degree of freedom since the number of rows and the number of columns
both are equal to 2 : v = (number of rows - 1) X (number of columns - 1).
Referring to a table of the chi-square distribution we see that the null hypothesis
should be rejected (P < 0.005 for the TWINSPAN classification and 0.01 < P
< 0.025 for the FLEXCLUS classification), which means that the types are related
to moisture level for both classifications.

We should not use the chi-square test because the expected cell frequencies
are too low.

Exercise 6.6 Cluster interpretation with ordinal environmental data

The following table shows the sites ordered by increasing depth of the Al horizon;
the sites belonging to the right-hand side of the TWINSPAN dichotomy are
indicated with an asterisk. Rank numbers are assigned, in case of ties the average
rank number is used. Site 18 is not included in the list since its value for this
variable is missing.

Site 7 1 10 2 11 20* 9*19 17 4 8* 6 3 16* 12* 13* 5 14* 15*
Al 2.8 2.8 3.3 3.5 3.5 3.5 3.7 3.7 4.0 4.2 4.2 4.3 4.3 5.7 5.8 6.0 6.3 9.3 12.
Rank 1.5 1.5 3 5 5 5 7.5 7.5 9 10. 10. 12. 12. 14 15 16 17 18 19

Rank numbers 10. and 12. indicate 10.5 and 12.5 respectively. Value of T{ (for
the smaller, right-hand-side group) is the sum of the rank numbers: 105.
Value of T2 = 8(8+1 l+l)-105 = 55. T, which is referred to a table of Wilcoxon's
test, is the smaller of these two: 55 Looking up this value in the table, we conclude
that we cannot reject our null hypothesis. There is no evidence that the types
are related to the depth of the Al horizon.
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