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Genetic distances and nucleotide
substitution models

THEORY

Korbinian Strimmer and Arndt von Haeseler

4.1 Introduction

One of the first steps in the analysis of aligned nucleotide or amino acid sequences

typically is the computation of the matrix of genetic distances (or evolutionary

distances) between all pairs of sequences. In the present chapter we discuss two

questions that arise in this context. First, what is a reasonable definition of a

genetic distance, and second, how to estimate it using statistical models of the

substitution process.

It is well known that a variety of evolutionary forces act on DNA sequences (see

Chapter 1). As a result, sequences change in the course of time. Therefore, any two

sequences derived from a common ancestor that evolve independently of each other

eventually diverge (see Fig. 4.1). A measure of this divergence is called a genetic

distance. Not surprisingly, this quantity plays an important role in many aspects

of sequence analysis. First, by definition it provides a measure of the similarity

between sequences. Second, if a molecular clock is assumed (see Chapter 11),

then the genetic distance is linearly proportional to the time elapsed. Third, for

sequences related by an evolutionary tree, the branch lengths represent the distance

between the nodes (sequences) in the tree. Therefore, if the exact amount of

sequence divergence between all pairs of sequences from a set of n sequences is

known, the genetic distance provides a basis to infer the evolutionary tree relating

the sequences. In particular, if sequences actually evolved according to a tree and if
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Ancestral sequence
AACCTGTGCA

Seq1 AATCTGTGTA
* *

Seq2 ATCCTGGGTT
* * **

Seq1 AATCTGTGTA
seq2 ATCCTGGGTT

** * *

Fig. 4.1 Two sequences derived from the same common ancestral sequence mutate and diverge.

the correct genetic distances between all pairs of sequences are available, then it is

computationally straightforward to reconstruct this tree (see next chapter).

The substitution of nucleotides or amino acids in a sequence is usually modeled

as a random event. Consequently, an important prerequisite for computing genetic

distances is the prior specification of a model of substitution, which provides a

statistical description of this stochastic process. Once a mathematical model of

substitution is assumed, then straightforward procedures exist to infer genetic

distances from the data.

In this chapter we describe the mathematical framework to model the process

of nucleotide substitution. We discuss the most widely used classes of models, and

provide an overview of how genetic distances are estimated using these models,

focusing especially on those designed for the analysis of nucleotide sequences.

4.2 Observed and expected distances

The simplest approach to measure the divergence between two strands of aligned

DNA sequences is to count the number of sites where they differ. The propor-

tion of different homologous sites is called observed distance, sometimes also

called p-distance, and it is expressed as the number of nucleotide differences per

site.

The p-distance is a very intuitive measure. Unfortunately, it suffers from a

severe shortcoming: if the degree of divergence is high, p-distances are generally

not very informative with regard to the number of substitutions that actually

occurred. This is due to the following effect. Assume that two or more mutations

take place consecutively at the same site in the sequence, for example, suppose

an A is being replaced by a C, and then by a G. As result, even though two

replacements have occurred, only one difference is observed (A to G). Moreover,

in case of a back-mutation (A to C to A) we would not even detect a single

replacement. As a consequence, the observed distance p underestimates the true
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Fig. 4.2 Relationships between expected genetic distance d and observed p-distance.

genetic distance d, i.e. the actual number of substitutions per site that occurred.

Figure 4.2 illustrates the general relationship between d and p. As evolutionary time

goes by, multiple substitutions per site will accumulate and, ultimately, sequences

will become random or saturated (see Chapter 20). The precise shape of this

curve depends on the details of the substitution model used. We will calculate this

function later.

Since the genetic distance cannot be observed directly, statistical techniques are

necessary to infer this quantity from the data. For example, using the relationship

between d and p given in Fig. 4.2, it is possible to map an observed distance p to the

corresponding genetic distance d. This transformation is generally non-linear. On

the other hand, d can also be inferred directly from the sequences using maximum
likelihood methods.

In the next sections we will give an intuitive description of the substitution pro-

cess as a stochastic process. Later we will emphasize the “mathematical” mechanics

of nucleotide substitution and also outline how maximum likelihood estimators
(MLEs) are derived.

4.3 Number of mutations in a given time interval *(optional )

To count the number of mutations X(t) that occurred during the time t, we intro-

duce the so-called Poisson process which is well suited to model processes like

radioactive decay, phone calls, spread of epidemics, population growth, and so on.

The structure of all these phenomena is as follows: at any point in time an event,
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i.e. a mutation, can take place. That is to say, per unit of time a mutation occurs

with intensity or rate µ. The number of events that can take place is an integer

number.

Let Pn(t) denote the probability that exactly n mutations occurred during the

time t:

Pn(t) = P(X(t) = n) (4.1)

If t is changed, this probability will change.

Let us consider a time interval δt. It is reasonable to assume that the occurrence

of a new mutation in this interval is independent of the number of mutations

that happened so far. When δt is small compared to the rate µ, µδt equals the

probability that exactly one mutation happens during δt. The probability of no

mutation during δt is obviously 1 − µδt. In other words, we are assuming that, at

the time t + δt, the number of mutations either remains unchanged or increases

by one. More formally

P0(t + δt) = P0(t) · (1 − µδt) (4.2)

That is the probability of no mutation up to time t + δt is equal to the probability

of no mutation up to time t multiplied by the probability that no mutation took

place during the interval (t, t + δt). If we observe exactly n mutations during this

period, two possible scenarios have to be considered. In the first scenario, n − 1

mutations occurred up to time t and exactly one mutation occurred during δt,

with the probability of observing n mutations given by Pn−1(t) · µδt. In the

second scenario, n mutations already occurred at time t and no further mutation

takes place during δt, with the probability of observing n mutations given by

Pn(t) · (1 − µδt). Thus, the total probability of observing n mutations at time

t + δt is given by the sum of the probabilities of the two possible scenarios:

Pn(t + δt) = Pn−1(t) · µδt + Pn(t) · (1 − µδt) (4.3)

Equations (4.2) and (4.3) can be rewritten as:

[P0(t + δt) − P0(t)]/δt = −µP0(t) (4.4a)

[Pn(t + δt) − Pn(t)]/δt = µ[Pn−1(t) − Pn(t)] (4.4b)

When δt tends to zero, the left part of (4.4a, b) can be rewritten (ignoring certain

regularity conditions) as the first derivative of P(t) with respect to t

P ′
0(t) = −µ · P0(t) (4.5a)

P ′
n(t) = µ · [Pn−1(t) − Pn(t)] (4.5b)
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These are typical differential equations which can be solved to compute the prob-

ability P0(t) that no mutation has occurred at time t. In fact, we are looking for a

function of P0(t) such that its derivative equals P0(t) itself multiplied by the rate µ.

An obvious solution is the exponential function:

P0(t) = exp(−µt) (4.6)

That is, with probability exp(−µt) no mutation occurred in the time interval

(0, t). Alternatively, we could say that probability that the first mutation occurred

at time x ≥ t is given by:

F (x) = 1 − exp(−µt) (4.7)

This is exactly the density function of the exponential distribution with parameter

µ. In other words, the time to the first mutation is exponentially distributed: the

longer the time, the higher the probability that a mutation occurs. Incidentally, the

times between any two mutations are also exponentially distributed with parameter

µ. This is the result of our underlying assumption that the mutation process “does

not know” how many mutations already occurred.

Let us now compute the probability that a single mutation occurred at time t:

P1(t). Recalling (4.5b), we have that:

P ′
1(t) = µ · [P0(t) − P1(t)] (4.8)

From elementary calculus, we remember the well-known rule of products to com-

pute the derivative of a function f(t), when f(t) is of the form f(t) = h(t)g(t):

f ′′(t) = g ′(t)h(t) + g (t)h′(t) (4.9)

Comparing (4.9) with (4.8), we get the idea that P1(t) can be written as the product

of two functions, i.e. P1(t) = h(t) g(t) where h(t) = P0(t) = exp(−µt) and g(t) =
µt. Thus P1(t) = (µt) exp(−µt). If we compute the derivative, we reproduce (4.8).

Induction leads to (4.10):

Pn(t) = [(µt)n exp(−µt)]/n! (4.10)

This formula describes the Poisson distribution, that is, the number of mutations

up to time t is Poisson distributed with parameter µt. On average, we expect

µt mutations with variance µt. It is important to note that the parameters µ,

nucleotide substitutions per site per unit time, and t, the time, are confounded,

meaning that we cannot estimate them separately but only through their product

µt (number of mutations per site up to time t). We will show in the practical part

of the chapter an example from literature on how to use (4.10).
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Fig. 4.3 Instantaneous rate matrix Q. Each entry in the matrix represents the instantaneous sub-
stitution rate form nucleotide i to nucleotide j (rows, and columns, follow the order A, C,
G, T). m is the mean instantaneous substitution rate; a, b, c, d, e, f, g, h, i, j, k, l, are relative
rate parameters describing the relative rate of each nucleotide substitution to any other. πA,
πC, π T, πG, are frequency parameters corresponding to the nucleotide frequencies (Yang,
1994). Diagonal elements are chosen so that the sum of each row is equal to zero.

4.4 Nucleotide substitutions as a homogeneous Markov process

The nucleotide substitution process of DNA sequences outlined in the previous

section (i.e. the Poisson process) can be generalized to a so-called Markov process
which uses a Q matrix that specifies the relative rates of change of each nucleotide

along the sequence (see next section for the mathematical details). The most general

form of the Q matrix is shown in Fig. 4.3. Rows follow the order A, C, G, and T,

so that, for example, the second term of the first row is the instantaneous rate of

change from base A to base C. This rate is given by the product of µ, the mean

instantaneous substitution rate, times the frequency of base A, times a, a relative

rate parameter describing, in this case, how often the substitution A to C occurs

during evolution with respect to the other possible substitutions. In other words,

each non-diagonal entry in the matrix represents the flow from nucleotide i to j,

while the diagonal elements are chosen in order to make the sum of each row equal

to zero since they represent the total flow that leaves nucleotide i.

Nucleotide substitution models like the ones summarized by the Q matrix in

Fig. 4.3 belong to a general class of models known as time-homogeneous time-

continuous stationary Markov models. When applied to modeling nucleotide sub-

stitutions, they all share the following set of underlying assumptions:

(1) At any given site in a sequence, the rate of change from base i to base j is independent
from the base that occupied that site prior i (Markov property).

(2) Substitution rates do not change over time (homogeneity).
(3) The relative frequencies of A, C, G, and T (πA, πC, πG, πT) are at equilibrium

(stationarity).

These assumptions are not necessarily biologically plausible. They are the con-

sequence of modeling substitutions as a stochastic process. Within this general

framework, we can still develop several sub-models. In this book, however, we will

examine only the so-called time-reversible models, i.e. those ones assuming for any
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Fig. 4.4 Instantaneous rate matrix Q for the Jukes and Cantor model (JC69).

two nucleotides that the rate of change from i to j is always the same than from j

to i (a = g, b = h, c = i, d = j, e = k, f = g in the Q matrix). As soon as the Q
matrix, and thus the evolutionary model, is specified, it is possible to calculate the

probabilities of change from any base to any other during the evolutionary time t,

P(t), by computing the matrix exponential

P(t) = exp(Qt) (4.11)

(for an intuitive explanation of why, consider in analogy the result that led us

to (4.6)). When the probabilities P(t) are known, this equation can also be used

to compute the expected genetic distance between two sequences according to the

evolutionary models specified by the Q matrix. In the next section we will show how

to calculate P(t) and the expected genetic distance in case of the simple Jukes and

Cantor model of evolution (Jukes & Cantor, 1969), whereas for more complex

models only the main results will be discussed.

4.4.1 The Jukes and Cantor (JC69) model

The simplest possible nucleotide substitution model, introduced by Jukes and

Cantor in 1969 (JC69), specifies that the equilibrium frequencies of the four

nucleotides are 25% each, and that during evolution any nucleotide has the same

probability to be replaced by any other. These assumptions correspond to a Q
matrix with πA = πC = πG = πT = 1/4, and a = b = c = g = e = f = 1 (see

Fig. 4.4). The matrix fully specifies the rates of change between pairs of nucleotides

in the JC69 model. In order to obtain an analytical expression for p we need to

know how to compute Pii(t), the probability of a nucleotide to remain the same

during the evolutionary time t, and Pij(t), the probability of replacement. This can

be done by solving the exponential P(t) = exp(Qt) (4.11), with Q as the instan-

taneous rate matrix for the JC69 model. The detailed solution requires the use of

matrix algebra (see next section for the relevant mathematics), but the result is

quite straightforward:

Pii (t) = 1/4 + 3/4 exp(−µt) (4.12a)

Pi j (t) = 1/4 − 1/4 exp(−µt) (4.12b)
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From these equations, we obtain for two sequences that diverged t time units ago:

p = 3/4[1 − exp(−2µt)] (4.13)

and solving for µt we get:

µt = −1/2 log(1 − 4/3 p) (4.14)

Thus the right-hand side gives the number of substitutions occurring in both of

the lines leading to the shared ancestral sequence. The interpretation of the above

formula is very simple. Under the JC69 model 3/4µt is the number of substitutions

that actually occurred per site (see Q matrix in Fig. 4.4). Therefore, d = 2 (3/4 µt)

is the genetic distance between two sequences sharing a common ancestor. On the

other hand, p is interpreted as the observed distance or p-distance, i.e. the observed

proportion of different nucleotides between the two sequences (see Section 4.4).

Substituting µt with 2/3d in (4.14) and re-arranging a bit, we finally obtain the

Jukes and Cantor correction formula for the genetic distance d between two

sequences:

d = −3/4 ln(1 − 4/3 p) (4.15a)

It can also be demonstrated that the variance V(d) will be given by:

V(d) = 9p(1 − p)/(3 − 4p)2n (4.15b)

(Kimura & Ohta, 1972). More complex nucleotide substitution models can be

implemented depending on which parameters of the Q matrix we decide to estimate

(see Section 4.6 below). In the practical part of this chapter we will see how to

calculate pairwise genetic distances for the example data sets according to different

models. Chapter 10 will discuss a statistical test that can help select the best-fitting

nucleotide substitution model for a given data set.

4.5 Derivation of Markov Process *(optional)

In this section we show how the stochastic process for nucleotide substitution

can be derived from first principles such as detailed balance and the Chapman–

Kolmogorov equations. To model the substitution process on the DNA level, it

is commonly assumed that a replacement of one nucleotide by another occurs

randomly and independently, and that nucleotide frequencies π i in the data do

not change over time and from sequence to sequence in an alignment. Under

these assumptions the mutation process can be modeled by a time-homogeneous

stationary Markov process.

In this model, essentially each site in the DNA sequence is treated as a random

variable with a discrete number n of possible states. For nucleotides there are
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four states (n = 4), which correspond to the four nucleotide bases A, C, G, and

T. The Markov process specifies the transition probabilities from one state to the

other, i.e. it gives the probability of the replacement of nucleotide i by nucleotide

j after a certain period of time t. These probabilities are collected in the transition

probability matrix P(t). Its components Pij(t) satisfy the conditions:

n∑
j=1

Pi j (t) = 1 (4.16)

and

Pi j (t) > 0 for t > 0 (4.17)

Moreover, it also fulfills the requirement that

P(t + s ) = P(t) + P(s ) (4.18)

known as the Chapman–Kolmogorov equation, and the initial condition

Pi j (0) = 1, for i = j (4.19a)

Pi j (0) = 0, for i �= j (4.19b)

For simplicity it is also often assumed that the substitution process is reversible, i.e.

that

πi Pi j (t) = π j P j i (t) (4.20)

holds. This additional condition on the substitution process, known as detailed bal-

ance, implies that the substitution process has no preferred direction. For small t

the transition probability matrix P(t) can be linearly approximated (Taylor expan-

sion) by:

P(t) ≈ P(0) + tQ (4.21)

where Q is called rate matrix. It provides an infinitesimal description of the sub-

stitution process. In order not to violate (4.16) the rate matrix Q satisfies

n∑
i=1

Qi j = 0 (4.22)

which can be achieved by defining

Qii = −
n∑

i �= j

Qi j (4.23)

Note that Qij > 0, since we can interpret them as the flow from nucleotide i to

j, Qii < 0 is then the total flow that leaves nucleotide i, hence it is less than zero. In
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contrast to P, the rate matrix Q does not comprise probabilities. Rather, it describes

the amount of change of the substitution probabilities per unit time. As can be seen

from (4.21) the rate matrix is the first derivative of P(t), which is constant for all

t in a time-homogeneous Markov process. The total number of substitutions per

unit time, i.e. the total rate µ, is

µ = −
n∑

i=1

πi Qii (4.24)

so that the number of substitutions during time t equals d = µt. Note that, in this

equation, µ and t are confounded. As a result, the rate matrix can be arbitrarily

scaled, i.e. all entries can be multiplied with the same factor without changing

the overall substitution pattern, only the unit in which time t is measured will be

affected. For a reversible process P, the rate matrix Q can be decomposed into rate

parameters Rij and nucleotide frequencies π i.

Qi j = Ri j , π j , for i �= j (4.25)

The matrix R = Rij is symmetric, Rij = Rji, and has vanishing diagonal entries,

Rii = 0.

From the Chapman–Kolmogorov (4.18) we get the forward and backward dif-

ferential equations:

d

dt
P(t) = P(t)Q = QP(t) (4.26)

which can be solved under the initial condition (4.19a,b) to give

P(t) = exp(tQ). (4.27)

For a reversible rate matrix Q (4.20) this quantity can be computed by spectral

decomposition (Bailey, 1964)

Pi j (t) =
n∑

m=1

exp(λmt)Umi U
−1
j m (4.28)

where the λi are the eigenvalues of Q, U = (Uij) is the matrix with the corresponding

eigenvectors, and U−1 is the inverse of U.

Choosing a model of nucleotide substitution in the framework of a reversible

rate matrix amounts to specifying explicit values for the matrix R and for the fre-

quencies π i. Assuming n different states, the model has n−1 independent frequency

parameters π i (as
∑

πi = 1) and [n(n−1)/2]−1 independent rate parameters (as

the scaling of the rate matrix is irrelevant, and Rij = Rji and Rii = 0). Thus, in the

case of nucleotides (n = 4) the substitution process is governed by 3 independent

frequency parameters π i and 5 independent rate parameters Rij.
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4.5.1 Inferring the expected distances

Once the rate matrix Q or, equivalently, the parameters π i and Rij, are fixed, the

substitution model provides the basis to statistically infer the genetic distance d

between two DNA sequences. Two different techniques exist, both of which are

widely used. The first approach relies on computing the exact relationship between

d and p for the given model (see Fig. 4.2). The probability that a substitution is

observed after time t is

p = 1 −
n∑

i=1

πi Pii (t) (4.29)

With the definition of µ (equation 4.24) and t = d/µ we obtain

p = 1 −
n∑

i=1

πi Pii

(
− d∑n

i=1 πi Qii

)
(4.30)

This equation can then be used to construct a method of moments estimator of

the expected distance by solving for d and estimating p (observed proportion of

different sites) from the data. This formula is a generalization of (4.13).

Another way to infer the expected distance between two sequences is to use

a maximum-likelihood approach. This requires the introduction of a likelihood
function L(d) (see Chapter 6 for more details). The likelihood is the probability to

observe the two sequences given the distance d. It is defined as

L (d) =
l∏

s=1

πxA(s ) PxA(s )xB(s )

(
d

µ

)
(4.31)

where xA(s) is the state at site s = 1, . . . , l in sequence A and PxA(s )xB(s ) (
d
µ

) is the

transition probability. A value for d that maximizes L(d) is called a maximum
likelihood estimate (MLE) of the genetic distance. To find this estimate, numerical

optimization routines are employed, as analytical results are generally not available.

Estimates of error of the inferred genetic distance can be computed for both the

methods of moments estimator (4.30) and the likelihood estimator (4.31) using

standard statistical techniques. The so-called “delta” method can be employed to

compute the variance of an estimate obtained from (4.30), and the Fisher informa-

tion criterion is helpful to estimate the asymptotic variance of maximum likelihood

estimates. For details we refer to standard statistics textbooks.

4.6 Nucleotide substitution models

If all of the eight free parameters of a reversible nucleotide rate matrix Q are speci-

fied, the general time reversible model (GTR) is derived (see Fig. 4.5). However,
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Fig. 4.5 Q matrix of the general time reversible (GTR) model of nucleotide substitutions.
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Fig. 4.6 The six possible substitution patterns for nucleotide data.

it is often desirable to reduce the number of free parameters, in particular when

parameters are unknown (and hence need to be estimated from the data). This can

be achieved by introducing constraints reflecting some (approximate) symmetries

of the underlying substitution process. For example, nucleotide exchanges all fall

into two major groups (see Fig. 4.6). Substitutions where a purine is exchanged

by a pyrimidine or vice versa (A↔C, A↔T, C↔G, G↔T) are called transver-
sions (Tv), all other substitutions are transitions (Ts). Additionally, one may wish

to distinguish between substitutions among purine and pyrimidines, i.e. purine

transitions (A↔G) TsR , and pyrimidine transitions (C↔T) TsY. When these con-

straints are imposed, only two independent rate parameters (out of five) remain,

the ratio κ of the Ts and Tv rates and the ratio γ of the two types of transition rates.

This defines the Tamura–Nei (TN93) model (Tamura & Nei, 1993) which can be

written as

RTN
i j = κ

(
2γ

γ + 1

)
for TsY (4.32a)

RTN
i j = κ

(
2

γ + 1

)
for TsR (4.32b)

RTN
i j = 1 for Tv (4.32c)
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If γ = 1 and therefore the purine and pyrimidine transitions have the same rate,

this model reduces to the HKY85 model (Hasegawa et al., 1985)

R H K Y
i j = κ for Ts (4.33a)

RH K Y
i j = 1 for Tv (4.33b)

If the base frequencies are uniform (pi = 1/4), the HKY85 model further reduces

to the Kimura 2-parameter (K80) model (Kimura, 1980). For κ = 1, the HKY85

model is called F81 model (Felsenstein, 1981) and the K80 model degenerates to the

Jukes and Cantor (JC69) model. The F84 model (Thorne et al., 1992; Felsenstein,

1993) is also a special case of the TN93 model. It is similar to the HKY85 model

but uses a slightly different parameterization. A single parameter τ generates the

κ and γ parameters of the TN93 model (4.32a,b,c) in the following fashion. First,

the quantity

ρ = πRπY[πRπYτ − (πAπG + πCπT)]

(πAπGπY + πCπTπR)
(4.34)

is computed which then determines both

κ = 1 + 1

2
ρ

(
1

πR
+ 1

πY

)
(4.35)

and

γ = πY + ρ

πY

πR

πR + ρ
(4.36)

of the TN93 model, where πA, πC, etc. are the base frequencies, πR and πY are the

frequency of purines and pyrimidines.

The hierarchy of the substitution models discussed above is shown in Fig. 4.7.

4.6.1 Rate heterogeneity among sites

It is a well-known phenomenon that the rate of nucleotide substitution can vary

substantially for different positions in a sequence. For example, in protein coding

genes third codon positions mutate usually faster than first positions, which, in

turn, mutate faster than second positions. Such a pattern of evolution is commonly

explained by the presence of different evolutionary forces for the sites in question.

In the previous sections we have ignored this problem and silently assumed rate

homogeneity over sites, but rate heterogeneity can play a crucial part in the inference

of genetic distances. To account for the site-dependent rate variation, a plausible
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Model                    Free parameters
in the Q-matrix

GTR 8
a, b, c, d, e, ππππA,,,, ππππC,,,, ππππG,,,,

(a+b+c+d+e+f =1  ππππA,+,+,+,+ ππππC,+,+,+,+ ππππG,+,+,+,+ ππππT,,,,=1) 

TN93 5
a=c=d=f, b=e, ππππA,,,, ππππC,,,, ππππG,,,,
(Ti/Tv ratio, Y/R ratio and and three

frequencies since ππππA,+,+,+,+ ππππC,+,+,+,+ ππππG,+,+,+,+ ππππT,,,,=1)

4
a=b=c=d=1, b=e=k, ππππA,,,, ππππC,,,, ππππG,,,,
(Ti/Tv ratio and only thre e

frequencies since ππππA,+,+,+,+ ππππC,+,+,+,+ ππππG,+,+,+,+ ππππT,,,,=1) 

3
a=c=d=f=b=e=f, ππππA,,,, ππππC,,,, ππππG,,,,

(only three nt frequencies since ππππA,+,+,+,+ ππππC,+,+,+,+ ππππG,+,+,+,+ ππππT,,,,=1) 

1
a=b=c=d=1, b=e=k,  πA=π=π=π=πC=π=π=π=πG =π=π=π=πT

(Ti/Tv ratio) 

JC69 0
a=b=c=d=e=f,    ππππA=π=π=π=πC=π=π=π=πG =π=π=π=πT

HKY85 F84

F81

K80

Fig. 4.7 Hierarchy of nucleotide substitution models.

model for distribution of rates over sites is required. The common approach is to

use a gamma (�) distribution with expectation 1.0 and variance 1/α.

Pdf (r ) = ααr α−1/exp(αr)�(α) (4.37)

By adjusting the shape parameter α, the �-distribution accommodates for varying

degree of rate heterogeneity (see Fig. 4.8). For α > 1, the distribution is bell-shaped
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r

pdf(r)

= 0.5

= 2.0

= 10.0

Fig. 4.8 Different shapes of the �-distribution depending on the α-shape parameter.

and models weak rate heterogeneity over sites. The relative rates drawn from

this distribution are all close to 1.0. For π < 1, the �-distribution takes on its

characteristic L-shape, which describes situations of strong rate heterogeneity, i.e.

some positions have very large substitution rates but most other sites are practically

invariable.

Rather than using the continuous �-distribution it is computationally more effi-

cient to assume a discrete �-distribution with a finite number c of equally probable

rates q1, q2, . . . , qc. Usually, 4–8 discrete categories are enough to obtain a good

approximation of the continuous function (Yang, 1994b). A further generalization

is provided by the approach of Kosakovsky et al. (2005) who propose a two-stage

hierarchical Beta–Gamma model for fitting the rate distribution across sites.
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4.7 Software packages

A large number of software packages are available to compute genetic dis-

tances from DNA sequences. An exhaustive list is maintained by Joe Felsenstein

at http://evolution.genetics.washington.edu/PHYLIP/software.html. Among others,

the programs Phylip, Paup* (see Chapter 8), Tree-Puzzle (Schmidt et al., 2002; see

Chapter 6), Mega4 (Kumar et al., 1993), Dambe (Xia, 2000; see Chapter 20), and

Paml (Yang, 2000; see Chapter 11) provide the possibility to infer genetic distances

and will be discussed in this book.

Phylogeny Inference Package (Phylip), was one of the first freeware phy-

logeny software to be developed (Felsenstein, 1993). It is a package consist-

ing of several programs for calculating genetic distances and inferring phylo-

genetic trees according to different algorithms. Pre-compiled executables files

are available for Windows3.x/95/98, Windows Vista, pre-386 and 386 DOS,

Macintosh (non-PowerMac), and MacOSX. A complete description of the package

including the instructions for installation on different machines can be found at

http://evolution.gs.washington.edu/phylip.html. The Phylip software modules that

will be discussed throughout the book are briefly summarized in Box 4.1.

Tree-Puzzle was originally developed to reconstruct phylogenetic trees from

molecular sequence using maximum likelihood with a fast tree-search algorithm

called quartet puzzling (Strimmer & von Haeseler, 1995; see Chapter 6). The

program also computes pairwise maximum likelihood distances according to a

number of models of nucleotide substitution. Versions of Tree-Puzzle for UNIX,

MacOSX, and Windows95/98/NT can be freely downloaded from the Tree-Puzzle
web page at http://www.TREE-PUZZLE.de/. The quartet-puzzling algorithm to

infer phylogenetic trees will be described in detail in Chapter 6. In what follows,

it is shown how to compute genetic distances according to different evolutionary

models using Tree-Puzzle.

Installation of these programs should make the Phylip folder and the Tree-
Puzzle folder visible on your local computer. These folders contain several files,

including executable applications, documentation, and source codes. Phylip ver-

sion 3.66 has three subdirectories: doc, exe, src; the executables are in the exe

folder. The doc directory contains an extensive documentation, whereas the

source codes are in src. In Tree-Puzzle version 5.3 the program executable can

be found in the src folder within the Tree-Puzzle folder. Any of the software mod-

ules within Phylip and Tree-Puzzle works in the same basic way: they need a

126
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Box 4.1 The Phylip software package

Phylip contains several executables for analyzing molecular as well as morphological data
and drawing phylogenetic trees. However, only some of the software modules included
in the package will be discussed in this book; that is, those dealing with DNA and amino
acid sequences analysis. These modules are summarized herein. Information about the
other modules can be found in the Phylip documentation available with the program at
http://evolution.genetics.washington.edu/PHYLIP/software.html.

Phylip

executable

input

data

type of

analysis

book

chapters

DNAdist.exe aligned DNA sequences calculates genetic distances

using different nucleotide

substitution models

5

ProtDist.exe aligned protein sequences calculates genetic distances

using different amino acid

substitution matrices

See also

9

Neighbor.exe genetic distances calculates NJ or UPGMA

trees

5

Fitch.exe genetic distances calculates Fitch–Margoliash

trees

5

Kitch.exe genetic distances calculates Fitch–Margoliash

trees assuming a molecular

clock

5

DNAML.exe aligned DNA sequences calculates maximum

likelihood trees

See also

6

ProtPars.exe aligned protein sequences calculates maximum

parsimony trees

See also

8

SeqBoot.exe aligned DNA or protein

sequences

generates bootstrap replicates

of aligned DNA or protein

sequences

5

Consense.exe phylogenetic trees

(usually obtained from

bootstrap replicates)

generates a consensus tree 5

file containing the input data, for example, aligned DNA sequences in Phylip
format (see Box 2.2 in Chapter 2 for different file formats), to be placed in the

same directory where the program resides; it produces one or more output files in

text format (usually called outfile and outtree), containing the analysis result. By

default, any application reads the data from a file named infile (no extension type!)

if such a file is present in the same directory, otherwise the user is asked to enter

the name of the input file. Other details about Phylip modules are summarized in

Box 4.1.
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Molecular Evolutionary Genetics Analysis (Mega4) is a sophisticated program

originally developed to carry out a number of distance and parsimony based anal-

ysis of both nucleotide and amino acid sequences (Kumar et al., 2004). One of the

advantages of Mega4 is the possibility to calculate standard errors of distance esti-

mates either using analytical formulas derived for a specific evolutionary model or

using bootstrap analysis. The latest version of the program also includes an excel-

lent data editor that allows multiple sequences to be aligned using a native imple-

mentation of the Clustal algorithm (see Chapter 3) and to manually edit aligned

and unaligned sequences. The software is freeware and can be downloaded from

http://www.megasoftware.net/overview.html. The website also contains a detailed

overview of the program capabilities, installation instructions, and extensive on-

line documentation. Mega4 only works under Windows, but it can be run in Mac

by using a PC emulator (which, unfortunately, makes the program very slow) or

under the Windows partition installed in the new Macs with Intel processors.

The aligned sequences in Phylip format (required for the analysis with Phylip
or Tree-Puzzle) or FASTA format (required for the analysis in Mega4) can be

downloaded from www.thephylogenetichandbook.org.

4.8 Observed vs. estimated genetic distances: the JC69 model

In what follows, we will use as an example the primate Trim5α sequences also

used in Chapter 3 and Chapter 11 (‘Primates.phy’). Figure 4.9a shows a matrix

with pairwise p-distances, i.e. number of different sites between two sequences

divided by the sequence length, for the primates data. The matrix is written in

lower-triangular form. Comparison of Human and Chimp sequences reveals 13

point mutations over 1500 nucleotides giving an observed distance p = 13/1500 =
0.008667. The estimated genetic distance according to the JC69 model, obtained

by substituting the observed distance in (4.15a) (see Section 4.4.1), is 0.008717.

The two measures agree up to the fourth digit. This is not surprising because, as

we have seen in the first part of the chapter, the relationship between observed and

estimated genetic distance is approximately linear when the evolutionary rate is

low and sequences share a relatively recent common ancestor. If mutations occur

according to a Poisson process (Section 4.3), we expect to see only a few nucleotide

substitutions between the two sequences, and no more than one substitution per

site. Simply counting the observed differences between two aligned sequences is

going to give an accurate measure of the genetic distance. Human and Chimp

split about five million year ago (MYA) and the evolutionary rate (µ) of cellular

genes is approximately 10−9 nucleotide substitutions per site per year (Britten,

1986). According to (4.10) the number of mutations between the Human and

Chimp lineage up to time t = 5 × 106 is Poisson distributed with parameter
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µ = 10−9. On average, we expect to see 2µt = 0.01 mutations per nucleotide

site along the two phylogenetic lineages since their divergence from the common

ancestor with variance 0.01. For two sequences 1500 nucleotides long we should

observe a mean of 15 mutations with a 95% confidence interval of 15 ± 7.59.

Indeed, the observed genetic distance between Human and Chimp in our example

falls within the expected interval.

As discussed in Section 4.2, however, using the p-distance to compare more

distantly related species is likely to lead to systematic underestimation of the genetic

distance. By comparing the p-distance matrix in Fig. 4.9a with the JC69 distance

matrix in Fig. 4.9b, we can see that the larger the observed distance the larger

the discrepancy with the JC69 distance. In our alignment there are 234 mutations

between Human and Squirrel (p-distance = 0.156). Assuming that the JC69 model
correctly describes the evolutionary process (which, as we will see, is actually

not true) the p-distance underestimates the actual genetic distance by about 11%

(d = 0.1749). JC69 distances, as well as distances according to more complex

evolutionary models, can be easily calculated with the DNAdist program of the

Phylip software package.

Place the file Primates.phy, containing the primate nucleotide alignment in

Phylip format, in the directory Phylip\exe, or in the same directory as where the

Phylip software module DNAdist is on your computer. Rename the file infile and

start DNAdist by double clicking on its icon. A new window will appear with the

following menu:

Nucleic acid sequence Distance Matrix program, version 3.66

Settings for this run:

D Distance (F84, Kimura, Jukes-Cantor, LogDet)? F84

G Gamma distributed rates across sites? No

T Transition/transversion ratio? 2.0

C One category of substitution rates? Yes

W Use weights for sites? No

F Use empirical base frequencies? Yes

L Form of distance matrix? Square

M Analyze multiple data sets? No

I Input sequences interleaved? Yes

0 Terminal type (IBM PC, VT52, ANSI)? IBM PC

1 Print out the data at start of run? No

2 Print indications of progress of run? Yes

Y to accept these or type letter for one to change

Type D followed by the enter key and again until the model selected is Jukes–

Cantor. In the new menu the option T and option F will no longer be present,
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since under the JC69 model all nucleotide substitutions are equally likely and base

frequency is assumed to be 0.25 for each base (see Section 4.4.1). Type y followed

by the enter key to carry out the computation of genetic distances. The result

is stored in a file called outfile, which can be opened with any text editor. The

format of the output matrix, square or lower triangular, can be chosen before

starting the computation by selecting option L. Of course, each pairwise distance

can be obtained by replacing p in (4.15a) with the observed distance given in

Fig. 4.9. That is exactly what the program DNAdist with the current settings has

done: first it calculates p-distances, and then it uses the JC69 formula to convert

them in genetic distances.

4.9 Kimura 2-parameter (K80) and F84 genetic distances

The K80 model relaxes one of the main assumptions of the JC69 model allowing for

a different instantaneous substitution rate between transitions and transversions

(a = c = d = f = 1 and b = e = κ in the Q matrix) (Kimura, 1980). Similarly

to what has been done in Section 4.4, by solving the exponential P(t) = exp(Qt)

for P(t) the K80 correction formula for the expected genetic distance between two

DNA sequences is obtained:

d = 1/2 ln(1/(1 − 2P − Q)) + 1/4 ln(1/(1 − 2Q)) (4.38a)

where P and Q are the proportion of the transitional and transversional differences

between the two sequences, respectively. The variance of the K80 distances is

calculated by:

V(d) = 1/n[(A2 P + B2 Q − (AP + BQ)2] (4.38b)

with A = 1/(1–2P-Q) and B = 1/2[(1/1–2P–Q) + (1/1–2Q)].

K80-distances can be obtained with DNAdist by choosing Kimura

2-parameter within the D option. The user can input an empirical transi-
tion/transversion ratio (Ti/Tv) by selecting option T from the main menu. Ti/Tv

is the probability of any transition (over a single unit of time) divided by the

probability of any transversion (over a single unit of time), which can be obtained

by dividing the sum of the probabilities of transitions (four terms) by the sum

of the probabilities of transversions (eight terms). The default value for Ti/Tv in
DNAdist is 2.0. Considering that there are twice more possible transversions than

transitions, the default value of Ti/Tv = 2.0 in DNAdist assumes that, during evo-

lution, transitional changes are about four times more likely than transversional

ones. When an empirical Ti/Tv value for the set of organisms under investigation

is not known from the literature, it is good practice to estimate it directly from the

data. A general strategy to estimate the Ti/Tv ratio of aligned DNA sequences will
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be discussed in Chapter 6. Note that some programs use the transition/transversion

rate ratio (κ) instead of the expected Ti/Tv ratio, which is the instantaneous rate of

transitions divided by the instantaneous rate of transversions and does not involve

the equilibrium base frequencies. Depending on the equilibrium base frequencies,

this rate ratio will be about twice the Ti/Tv ratio.

The genetic distance estimated with the K80 model (Ti/Tv = 2.0) between

Human and Chimp (0.008722), is still not significantly different from the p-

distance for the same reasons discussed above. The K80 distance between Squirrel

and Human is 0.180, which is slightly larger than the one estimated by the JC69.

However, even small changes in the distance can influence the topology of phyloge-

netic trees inferred with distance-based methods. The K80 model still relies on very

restricted assumptions such as that of equal frequency of the four bases at equi-

librium. The HKY85 (Hishino et al., 1985) and F84 (Felsenstein, 1984; Kishino &

Hasegawa, 1989) models relax that assumption allowing for unequal frequencies;

their Q matrices are slightly different, but both models essentially share the same set

of assumptions: a bias in the rate of transitional with respect to the rate of transver-

sional substitutions and unequal base frequencies (which are usually set to the

empirical frequencies). F84 is the default model in Phylip version 3.66. Since the

F84 model assumes unequal base frequencies, DNAdist empirically estimates the

frequencies for each sequence (option F) and it uses the average value over all

sequences to compute pairwise distances. When no is selected in option F, the

program asks the user to input the base frequencies in order A, C, G, T/U separated

by blank spaces. As with the K80 model, F84 scores transitional and transversional

substitutions differently and it is possible to input an empirical Ti/Tv ratio with

the option T.

4.10 More complex models

The TN93 model (Tamura & Nei, 1993), an extension of the F84 model, allows

different nucleotide substitution rates for purine (A↔G) and pyrimidine (C↔T)

transitions (b�=e in the correspondent Q matrix). TN93 genetic distances can

be computed with Tree-Puzzle by selecting from the menu: Pairwise dis-

tances only (no tree) in option k, and TN (Tamura & Nei, 1993) in

option m. The menu allows the user to input empirical Ti/Tv bias and pyrimi-

dine/purine transition bias, otherwise the program will estimate those parameters

from the data set (see Chapter 6 for the details). Genetic distances can also be

obtained according to simpler models. For example, by selecting HKY in option

m, Tree-Puzzle computes HKY85 distances. Since the JC69 model is a further

simplification of the HKY85 model where equilibrium nucleotide frequencies are

equal and there is no nucleotide substitution bias (see above), JC69 distances
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can be calculated with Tree-Puzzle by selecting the HKY85 model and setting

nucleotide frequencies equal to 0.25 each (option f in the menu) and the Ti/Tv

ratio equal to 0.5 (option t). Note that since there are twice more transversions

than transitions (see Fig. 4.6) the Ti/Tv ratio needs to be set to 0.5 and not to 1

in order to reduce the HKY85 model to the JC69! The distance matrix in square

format is written to the outdist file and can be opened with any text editor.

The program also outputs an oufilewith several statistics about the data set (the

file is mostly self-explanatory, but see also Section 4.13 and Chapter 6).

4.10.1 Modeling rate heterogeneity among sites

The JC69 model assumes that all sites in a sequence change at a uniform rate over

time. More complex models allow particular substitutions, for example, transitions,

to occur at different rate than others, for example, transversions, but any particular

substitution rate between nucleotide i and nucleotide j is the same among different

sites. Section 4.6.1 pointed out that such an assumption is not realistic, and it is

especially violated in coding regions where different codon positions usually evolve

at different rates. Replacements at the second codon position are always non-
synonymous, i.e. they change the encoded amino acid (see Chapter 1), whereas,

because of the degeneracy of the genetic code, 65% of the possible replacements

at the third codon position are synonymous, i.e. no change in the encoded amino

acid. Finally only 4% of the possible replacements at the first codon position are

synonymous. Since mutations in a protein sequence will most of the time reduce the

ability of the protein to perform its biological function, they are rapidly removed

from the population by purifying selection (see Chapter 1). As a consequence, over

time, mutations will accumulate more rapidly at the third rather than at the second

or the first codon position. It has been shown, for example, that in each coding

region of the human T-cell lymphotropic viruses (HTLVs), a group of human

oncogenic retroviruses, the third codon positions evolve about eight times faster

than the first and 16 times faster than the second positions (Salemi et al., 2000). It

is possible to model rate heterogeneity over sites by selecting the option:

B One category of substitution rates? Yes

in the main menu of DNAdist (which toggles this option to No) and to choose up

to nine different categories of substitution rates. The program then asks for input

of the relative substitution rate for each category as a non-negative real number.

For example, consider how to estimate the genetic distances for the primates

data set using the JC69 model, but assuming that mutations at the third position

accumulate ten times faster than at the first and 20 times faster than at the second

codon position. Since only the relative rates are considered, one possibility is to set

the rate at the first codon position equal to 1, the rate at the second to 0.5, and the
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rate at the third to 10. It is also necessary to assign each site in the aligned data

set to one of the three rate categories. Phylip assigns rates to sites by reading an

additional input file with default name “categories” containing a string of digits (a

new line or a blank can occur after any character in this string) representing the

rate category of each site in the alignment. For example, to perform the calculation

with the primates data set, we need to prepare a text file called categories (with no

extension) containing the following string:

12312312311231231231[ ...]

Each number in the line above represents a nucleotide position in the aligned

data set: for example, the first four numbers, 1231, refer to the first four positions

in the alignment and they assign the first position to rate category 1, the second

position to rate category 2, the third position to rate category 3, the fourth position

to rate category 1 again, and so forth. In the primates data set, sequences are in

the correct reading frame, starting at the first codon position and ending at a third

codon position, and there are 1500 positions. Thus the categories file has to

be prepared in the following way:

123123123 (and so forth up to 1500 digits)

An appropriately edited file (Primates cdp categories.phy) can be

found at www.thephylogenetichandbook.org. After renaming this file as “cate-

gories,” the following exercise can be carried out:

(i) Place the input files (primates.phy and categories) in the Phylip folder
and run DNAdist

(ii) Select option C and type 3 to choose three different rate categories
(iii) At the prompt of the program asking to specify the relative rate for each category

type: 1 0.5 10 and press enter
(iv) Choose the desired evolutionary model as usual and run the calculation.

If there is no information about the distribution and the extent of the rel-

ative substitution rates across sites, rate heterogeneity can be modeled using a

G-distribution (Yang, 1994b), a negative binomial distribution (Xia, 2000) or a

two-stage hierarchical Beta–Gamma model (Kosakovsky et al., 2005). As discussed

in Section 4.6.1, a single parameter α describes the shape of the �-distribution

(Fig. 4.8): L-shaped for α < 1 (strong rate heterogeneity), or bell-shaped for α > 1

(weak rate heterogeneity). Which value of α is the most appropriate for a given

data set, however, is usually not known. The next few chapters will discuss how

to estimate a with different approaches and how to estimate genetic distances

with �-distributed rates across sites (in particular, see Chapter 6). However, it is

important to keep in mind that, even though different sites across the genome do

http://www.thephylogenetichandbook.org
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change at different rates (Li, 1997), the use of a discrete �-distribution to model

rate heterogeneity over sites has no biological justification. It merely reflects our

ignorance about the underlying distribution of rates. It is widely used because it

allows both low and high rate heterogeneity among sites to be modeled easily and

flexibly by varying the a parameter.

Chapter 10 will show how to compare different evolutionary models. In such a

way it is also possible to test whether a nucleotide substitution model implementing

�-distributed rates across sites usually fits the data significantly better than a model

assuming uniform rates. Genetic distances with �-models can be estimated by

selecting the option G Gamma distributed rates across sites? in

DNAdist. For example, to estimate F84+� distances for the primates data set,

just run DNAdist as before, type G followed by the enter key (the menu will

change to display G Gamma distributed rates across sites? Yes),

and type y followed again by the enter key. Notice that, before running the analysis,

the program will ask to enter the coefficient of variation CV, which is required for

the specific computational implementation of G-models in Phylip. The relationship

between α and CV is CV = 1/
√

a. Therefore, to use a = 0.5 we digit the value 1.414

and press the enter key. As usual, the calculated distances will be written to outfile.

To illustrate the effect of model complexity and rate heterogeneity among sites

on distance estimation, the genetic distances for Human–Squirrel are shown for

different substitution models in Fig. 4.10. When correcting for “multiple hits,”

increasingly complex models have only a marginal effect on evolutionary distances

for this data set, whereas modeling rate heterogeneity (shown using circles) has

a profound effect on distance estimation. The practice section of the next chap-

ter demonstrates that this can also have an important impact on phylogenetic

inference.

4.11 Estimating standard errors using Mega4

The program Mega4 can estimate genetic distance estimates using most of the

nucleotide substitution models (with and without �-distribution) discussed above.

In addition, it is possible to use Mega4 to calculate the standard errors of the

estimated distances either analytically or by bootstrapping (a statistical technique

that is often used to assess the robustness of phylogenetic inference, see Chapter 5).

Standard errors for JC69 or K80 models are calculated in Mega4 by employing

the same variance formulas given in (4.15b) and (4.37), and can be useful to

perform statistical tests comparing different distance estimates (for example, to

decide whether or not two sets of distances are significantly different). The idea

behind bootstrapping, on the other hand, is to generate a large number of random

replicates (usually 1000–10 000) by randomly resampling with replacement from
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Fig. 4.10 Pairwise genetic distance for Human–Squirrel TRIM5α sequences using different evolu-
tionary models: p = p-distance, JC = Jukes and Cantor, K2P = Kimura 2-parameter,
HKY = Hasegawa–Kishino–Yano (85), TN = Tamura–Nei, GTR = General Time-Reversible.
Distances computed using gamma distributed rate among sites (a = 1.0) are indicated
using circles.

the original data points (for example, each column in a given alignment) so that

each replicate contains exactly the same number of data points as the original set

(for example, the same number of columns, i.e. sites, of the original alignment). As a

consequence, some of the original data points may be absent in particular replicates,

whereas others may be present more than once. The variance of each parameter

(for example, the genetic distance between two sequences) is then calculated using

the distribution of the parameter values obtained for each random replicate. The

underlying idea of this technique is to evaluate how robust the parameter values

are with respect to small changes in the original data.

To perform analyses in Mega4, the sequence data must first be imported in

the program. Sequences in FASTA format with the extension .fas under Windows

should be associated automatically with Mega4 as soon as the program is installed.

By double clicking on the file “Primates.fas” the nucleotide sequences appear in the

Alignment Explorerwindow of Mega4 where they can be aligned, translated

to amino acid and edited in different ways. By closing theAlignment Explorer

window the program asks whether the user wants to save the data in Mega format.

After choosing yes, you can save the file in Mega on your computer. The user is now
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asked whether to open the data file in Mega4. By selecting yes again, the sequences

are displayed in a new window called Sequence Data Explorer. To per-

form specific analyses, the user needs to close the Sequence Data Explorer

window and select the appropriate menu from the main Mega4 window. As an

example, we will obtain JC69 genetic distances with �-distributed rates across sites

(parameter α = 0.5) and standard errors calculated by 1000 bootstrap replicates:

(1) From the Distances menu, select Choose model . . .
(2) >Click on the green square to the right of the row saying ->Model and select

Nucleotide>Jukes and Cantor

(3) Click on the green square to the right of the row ->Rates among sites and
select Different(Gamma Distributed)

(4) Click on the button to the right of the row ->Gamma Parameter, select 0.5,
click the Ok button at the bottom of the window.

(5) From the Distances menu select Compute Pairwise

(6) Click on the green square to the right of the row ->Compute and select
Distance & Std. Err.

(7) Click the button to the right of the row Std. Err. Computation by

(8) In the new window select Bootstrap and 1000 Replications.
(9) Select the Option Summary tab and run the analysis by clicking the Compute

button at the bottom of the window.

Estimated distances and standard errors appear in a new window with a square

matrix providing pairwise distances in the lower triangular part (in gray) and

standard errors in the upper triangular part (in blue). The matrix can be printed

and/or exported in text format from the File menu of the Pairwise Dis-

tances window.

4.12 The problem of substitution saturation

It can be demonstrated that two randomly chosen, aligned DNA sequences of the

same length and similar base composition would have, on average, 25% identical

residues. Moreover, if gaps are allowed, as much as 50% of the residues can be

identical. This is the reason why the curve in Fig. 4.2, showing the relationship

between p-distance and genetic distance, reaches a plateau for p between 0.5 and

0.75 (i.e. for similarity scores between 50% and 25%). Beyond that point, it is not

possible anymore to infer the expected genetic distance from the observed one, and

the sequences are said to be saturated or to have reached substitution saturation.

The similarities between them are likely to be the result of chance alone rather than

homology (common ancestry). In other words, when full saturation is reached,
the phylogenetic signal is lost, i.e. the sequences are no longer informative
about the underlying evolutionary processes. In such a situation any estimate of
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genetic distances or phylogenetic trees, no matter which method is used (parsimony,

distance or even maximum likelihood methods!), is going to be meaningless since

gene sequences will tend to cluster according to the degree of similarity in their base

(or amino acid) composition, irrespectively of their true genealogy. The problem of

saturation is often overlooked in phylogeny reconstruction, when in fact it is rather

crucial (see Chapter 20). For example, in coding regions, third codon positions,

which usually evolve much faster than first and second (see above), are likely to be

saturated especially when distantly related taxa are compared. One way to avoid

this problem is to exclude third positions from the analysis, or to analyze the

corresponding amino acid sequence (see Chapter 9).

The program Dambe implements different methods to check for saturation

in a data set of aligned nucleotide sequences (see Chapter 20). Here, a graphical

exploration tool is introduced. The method takes advantage of the empirical obser-

vation that, in most data sets, transitional substitutions happen more frequently

than transversional ones. Therefore, by plotting the observed number of tran-

sitions and transversions against the corrected genetic distance for the n(n−1)/2

pairwise comparison in an alignment of n taxa, transitions and transversions should

both increase linearly with the genetic distance, with transitions being higher than

transversions. However, as the genetic distance (the evolutionary time) increases,

i.e. more divergent sequences are compared, saturation is reached and transver-

sions will eventually outnumber transitions. This is because by chance alone there

are eight possible transversions but only four transitions (see Fig. 4.6). In coding

sequences, saturation will be more pronounced in the rapidly evolving third codon

position.

Figure 4.11 (a) and (b) show the result for the Primates data set (Pri-

mates.fas file) analyzed using Dambe. To analyze first and second codon positions

(Fig. 4.11a) or third codon position (Fig. 4.11b) separately, select the item Work

on codon position 1 and 2 or Work on codon position 3 from

the Sequences menu before starting any analysis (the original sequences can be

restored by choosing Restore sequences from the same menu). The tran-

sition and transversion vs. divergence plot can be obtained by selecting the item

from the Graphics menu in Dambe.

The plots show that both transitions and transversions grow approximately lin-

ear with the genetic distance indicating no saturation in the Primates data set.

Figure 4.11c, on the other hand, is an example of substitution saturation at the

third codon position in envelope gp120 HIV-1 sequences aligned with simian

immunodeficiency virus (SIVcpz) isolated from Chimpanzees (the data set was

previously used in Salemi et al., 2001). Saturation becomes evident for sequence

pairs with F84 distances greater than 0.70. Therefore, in spite of SIVcpz and

HIV-1 belonging to the same phylogenetic lineage and sharing a common ancestor
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Fig. 4.11 Plotting the observed transitions and transversions against a corrected genetic distance
using Dambe. (a) First and second codon position of the primate data set. (b) Third codon
position of the primate data set. (c) Third codon position of an HIV/SIV envelope data set.
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within the last 300 years (Salemi et al., 2001) any phylogenetic inference based

on the signal present at the third codon position has to be considered unreliable.

Substitution saturation in this case is due to the extremely fast evolutionary rate of

HIV-1, around 10−3 nucleotide substitutions per site per year. In addition to the

graphical tool introduced here, Dambe also implements different statistical tests to

assess substitution saturation (see Chapter 20).

4.13 Choosing among different evolutionary models

After a few exercises, it should become clear that genetic distances inferred according

to different evolutionary models can lead to rather different results. Tree-building

algorithms such as UPGMA and Neighbor-Joining (see next chapter) are based on

pairwise distances among taxa: unreliable estimates will lead to inaccurate branch

lengths and, in some cases, to the wrong tree topology. When confronted with

model choice, the most complex model with the largest number of parameters is

not necessarily the most appropriate. A model with fewer parameters will produce

estimates with smaller variances. Since we always analyze a finite data sample,

our parameter estimates will be associated with sampling errors. Although for

sequences of at least 1000 nucleotides, these may be reasonably small, it has been

shown that models with more parameters still produce a larger error than simpler

ones (Tajima & Nei, 1984; Gojobori et al., 1992; Zharkikh, 1994). When a simple

evolutionary model (for example, JC or F84) fits the data not significantly worse

than a more complex model, the former should be preferred (see Chapter 10).

Finally, complex models can be computationally daunting for analyzing large data

sets, even using relatively fast computers.

Another basic assumption of Time-homogeneous time-continuous stationary

Markov models, the class of nucleotide substitution models discussed in the present

chapter (Section 4.4), is that the base composition among the sequences being ana-

lyzed is at equilibrium, i.e. each sequence in the data set is supposed to have

similar base composition, which does not change over time. Such an assumption

usually holds when closely related species are compared, but it may be violated

for very divergent taxa risking flawed estimates of genetic distances. Tree-Puzzle

implements by default a chi-square test comparing whether the nucleotide com-

position of each sequence is significantly different with respect to the frequency

distribution assumed in the model selected for the analysis. The result is written in

the outfile at the end of any computation. As an example, Fig. 4.12 shows the results

of the chi-square test for a set of mtDNA sequences from different organisms. There

are significant differences in base composition for 8 of the 17 taxa included in the

data: a severe violation of the equal frequency assumption in the homogeneous

Markov process. In this case, a more reliable estimate of the genetic distance can be
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SEQUENCE COMPOSITION (SEQUENCES IN INPUT ORDER)

5% chi-square test p-value
Lungfish Au passed 6.20%
Lungfish SA failed 0.62%
Lungfish Af failed 1.60%
Frog passed 58.01%
Turtle passed 44.25%
Sphenodon passed 59.78%
Lizard passed 38.67%
Crocodile failed 2.51%
Bird failed 0.00%
Human failed 0.85%
Seal passed 68.93%
Cow passed 59.11%
Whale passed 97.83%
Mouse failed 1.43%
Rat passed 39.69%
Platypus failed 3.46%
Opossum failed 0.01%

The chi-square test compares the nucleotide composition of each
sequence to the frequency distribution assumed in the maximum
likelihood model.

Fig. 4.12 Comparing nucleotide composition using a chi-squared test for a mitochondrial DNA data
set as outputted by Tree-Puzzle.

obtained with the LogDet method, which has been developed to deal specifically

with this kind of problem (Steel, 1994; Lockart et al., 1994). The method estimates

the distance d between two aligned sequences by calculating:

d = − ln[det F ] (4.39)

Det F is the determinant of a 4 × 4 matrix where each entry represents the

proportion of sites having any possible nucleotide pair within the two aligned

sequences. A mathematical justification for (4.39) is beyond the scope of this book.

An intuitive introduction to the LogDet method can be found in Pages and Holmes

(1998), whereas a more detailed discussion is given by Swofford et al. (1996).

LogDet distances can be calculated using the program Paup* and their application

to the mtDNA data set is discussed in the practical part of Chapter 8. Chapter 10

will focus on statistical tests for selecting the best evolutionary model for the data

under investigation.


