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Phylogenetic inference using maximum
likelihood methods

THEORY

Heiko A. Schmidt and Arndt von Haeseler

6.1 Introduction

The concept of likelihood refers to situations that typically arise in natural sciences

in which given some data D, a decision must be made about an adequate explanation

of the data. Thus, a specific model and a hypothesis are formulated in which the

model as such is generally not in question. In the phylogenetic framework, one

part of the model is that sequences actually evolve according to a tree. The possible

hypotheses include the different tree structures, the branch lengths, the parameters

of the model of sequence evolution, and so on. By assigning values to these elements,

it is possible to compute the probability of the data under these parameters and

to make statements about their plausibility. If the hypothesis varies, the result

is that some hypotheses produce the data with higher probability than others.

Coin-tossing is a standard example. After flipping a coin n = 100 times, h = 21

heads and t = 79 tails were observed. Thus, D = (21, 79) constitutes a sufficient

summary of the data. The model then states that, with some probability, θ ∈ [0, 1]

heads appear when the coin is flipped. Moreover, it is assumed that the outcome

of each coin toss is independent of the others, that θ does not change during the

experiment, and that the experiment has only two outcomes (head or tail). The

model is now fully specified. Because both, heads and tails, were obtained, θ must

be larger than zero and smaller than 1. Moreover, any probability textbook explains
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Fig. 6.1 Left: likelihood function of a coin-tossing experiment showing 21 heads and 79 tails. Right:
likelihood function of the Jukes–Cantor model of sequence evolution for a sequence with
length 100 and 21 observed differences.

that the probability to observe exactly H = h heads in n tosses can be calculated

according to the binomial distribution:

Pr[H = h] =
(

n

h

)
θ h(1 − θ)n−h (6.1)

Equation (6.1) can be read in two ways. First, if θ is known, then the probability

of h = 0, . . . , n heads in n tosses can be computed. Second, (6.1) can be seen

as a function of θ , where n and h are given; this defines the so-called likelihood
function

L (θ) = Pr[H = h] =
(

n

h

)
θh(1 − θ)n−h (6.2)

From Fig. 6.1, which illustrates the likelihood function for the coin-tossing example,

it can be seen that some hypotheses (i.e. choices of θ) generate the observed data

with a higher probability than others. In particular, (6.2) becomes maximal if

θ = 21
100 . This value also can be computed analytically. For ease of computation,

first compute the logarithm of the likelihood function, which results in sums rather

than products:

log[L (θ)] = log

(
n

h

)
+ h log θ + (n − h) log(1 − θ) (6.3)

The problem is now to find the value of θ (0 < θ < 1) maximizing the function.

From elementary calculus, it is known that relative extrema of a function, f (x),

occur at critical points of f , i.e. values x0 for which either f ′(x0) = 0 or f ′(x0) is

undefined. Differentiation of (6.3) with respect to θ yields:

L ′(θ) = ∂ log[L (θ)]

∂θ
= h

θ
− n − h

1 − θ
(6.4)
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This derivative is equal to zero if θ0 = h
n , positive, i.e. L ′(θ) > 0, for 0 < θ < θ0,

and negative for θ0 < θ < 1, so that log[L (θ)] attains its maximum at θ0 = h
n .

We say θ̂ = h
n is the maximum likelihood estimate (MLE) of the probability of

observing a head in a single coin toss (the hat ˆ notation indicates an estimate

rather than the unknown value of θ). In other words, when the value of θ is

selected that maximizes (6.3), the observed data are produced with the highest

likelihood, which is precisely the maximum likelihood (ML) principle. However,

the resulting likelihoods are usually small (e.g. L (21/100) ≈ 0.0975); conversely,

the likelihoods of competing hypotheses can be compared by computing the odds

ratio. Note that the hypothesis that the coin is fair (θ = 1/2) results in a likelihood

of L (1/2) ≈ 1.61 · 10−9; thus, the MLE of θ̂ = 0.21 is 6 · 107 times more likely

to produce the data than θ = 0.5! This comparison of odds ratios leads to the

statistical test procedure discussed in more detail in Chapters 8, 10–12, and 14.

In evolution, point mutations are considered chance events, just like tossing a

coin. Therefore, at least in principle, the probability of finding a mutation along

one branch in a phylogenetic tree can be calculated by using the same maximum-

likelihood framework discussed previously. The main idea behind phylogeny infer-

ence with maximum-likelihood is to determine the tree topology, branch lengths,

and parameters of the evolutionary model (e.g. transition/transversion ratio, base

frequencies, rate variation among sites) (see Chapter 4) that maximize the probabil-

ity of observing the sequences at hand. In other words, the likelihood function is the

conditional probability of the data (i.e. sequences) given a hypothesis (i.e. a model

of substitution with a set of parameters θ and the tree τ , including branch lengths):

L (τ, θ) = Pr(Data|τ, θ)

= Pr(aligned sequences|tree, model of evolution) (6.5)

The MLEs of τ and θ (named τ̂ and θ̂) are those making the likelihood function

as large as possible:

τ̂ , θ̂ = argmax
τ, θ

L (τ, θ) (6.6)

Before proceeding to the next section, some cautionary notes are necessary. First, the

likelihood function must not be confused with a probability. It is defined in terms

of a probability, but it is the probability of the observed event, not of the unknown

parameters. The parameters have no probability because they do not depend on

chance. Second, the probability of getting the observed data has nothing to do with

the probability that the underlying model is correct. For example, if the model states

that the sequences evolve according to a tree, although they have recombined, then

the final result will still be a single tree that gives rise to the maximum-likelihood

value (see also Chapter 15). The probability of the data being given the MLE of
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the parameters does not provide any hints that the model assumptions are in fact

true. One can only compare the maximum-likelihood values with other likelihoods

for model parameters that are elements of the model. To determine whether the

hypothesis of tree-like evolution is reasonable, the types of relationship allowed

among sequences must be enlarged; this is discussed in Chapter 21.

6.2 The formal framework

Before entering the general discussion about maximum-likelihood tree reconstruc-

tion, the simplest example (i.e. reconstructing a maximum-likelihood tree for two

sequences) is considered. A tree with two taxa has only one branch connecting the

two sequences; the sole purpose of the exercise is reconstructing the branch length

that produces the data with maximal probability.

6.2.1 The simple case: maximum-likelihood tree for two sequences

In what follows, it is assumed that the sequences are evolving according to the Jukes

and Cantor model (see Chapter 4). Each position evolves independently from the

remaining sites and with the same evolutionary rate. The alignment has length l

for the two sequences Si = (s 1
i , . . . , s l

i ), (i = 1, 2), where s j
i is the nucleotide, the

amino acid, or any other letter from a finite alphabet at sequence position j in

sequence i . The likelihood function is, then, according to (4.31) (Chapter 4):

L (d) =
l∏

j=1

πs j
1

Ps j
1 s j

2

(
−4d

3

)
(6.7)

where d , the number of substitutions per site, is the parameter of interest and

Pxy(t) is the probability of observing nucleotide y if nucleotide x was originally

present, and πs j
1

is the probability of character s j
1 in the equilibrium distribution.

From (4.12a) and (4.12b), the following is obtained:

Pxy

(
−4

3
d

)
=
{

1
4

(
1 + 3 exp

[− 4
3 d
]) ≡ P̃xx (d), if x = y

1
4

(
1 − exp

[− 4
3 d
]) ≡ P̃xy(d), if x �= y

(6.8)

To infer d , the relevant statistic is the number of identical pairs of nucleotides (l0)

and the number of different pairs (l1), where l0 + l1 = l . Therefore, the alignment

is summarized as D = (l0, l1) and the score is computed as:

log[L (d)] = C + l0 log
[

P̃xx (d)
]+ l1 log

[
P̃xy(d)

]
(6.9)

which is maximal if

d = −3

4
log

[
1 − 4

3
· l1

l1 + l0

]
. (6.10)
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U27426
U09127

U27445
U067158
U09126
U27399
U43386
L02317
AF025763
U08443
AF042106

L20571
AF10138

...AAAGTAATGAAGAAGAACAACAGGAAGTCATGGAGCTTATACATA...

...ATGGGGATAGAGAGGAATTATCCTTGCTGGTGGACATGGGGGATT...

...AGGGGGATACAGATGAATTGGCAACACTTGTGGAAATGGGGAACT...

...AAGGGGATACGGACGAATTGGCAACACTTCTGGAGATGGGGAACT...

...AGGGGGACACTGAGGAATTATCAACAATGGTGGATATGGGGCGTC...

...GAGGGGATACAGAGGAATTGGAAACAATGGTGGATATGGGGCATC...

...AGGGAGATGAGGAGGAATTGTCAGCATTTGTGGGGATGGGGCACC...

...AGGGAGATGCAGAGGAATTATCAGCATTTATGGAAATGGGGCATC...

...AAGGAGATCAGGAAGAATTATCAGCACTTGTGGAGATGGGGCACC...

...AAGGGGATCAGGAAGAATTGTCAGCACTTGTGGAGATGGGGCATG...

...AAGGAGATGAGGAAGCATTGTCAGCACTTATGGAGAGGGGGCACC...

...AAGGGGATCAGGAAGAATTATCGGCACTTGTGGACATGGGGCACC...

X52154

Fig. 6.2 Part of the mtDNA sequence alignment used as a relevant example throughout the book.

This result is not influenced by the constant C , which only changes the height of

the maximum but not its “location.” Please note that, the MLE of the number

of substitutions per site equals the method-of-moments estimate (see (4.15a)).

Therefore, the maximum-likelihood tree relating the sequences S1 and S2 is a

straight line of length d , with the sequences as endpoints.

This example was analytically solvable because it is the simplest model of

sequence evolution and, more importantly, because only two sequences – which

can only be related by one tree – were considered. The following sections set up the

formal framework to study more sequences.

6.2.2 The complex case

When the data set consists of n > 2 aligned sequences, rather than computing

the probability Pxy(t) of observing two nucleotides x and y at a given site in two

sequences, the probability of finding a certain column or pattern of nucleotides in

the data set is computed. Let D j denote the nucleotide pattern at site j ∈ {1, . . . , l}
in the alignment (Fig. 6.2). The unknown probability obviously depends on the

model of sequence evolution, M, and the tree, τ relating the n sequences with the

number of substitutions along each branch of the tree (i.e. the branch lengths). In

theory, each site could be assigned its own model of sequence evolution according

to the general time reversible model (see Chapter 4) and its own set of branch

lengths. Then, however, the goal to reconstruct a tree from an alignment becomes

almost computationally intractable and, hence, several simplifications are needed.

First, it is assumed that each site s in the alignment evolves according to the same

model M; for example, the Tamura–Nei (TN) model (see (4.32a, b, c)) (i.e. γ ,

κ , and π are assumed the same for each site in the alignment). The assumption

also implies that all sites evolve at the same rate µ (see (4.24)). To overcome

this simplification, the rate at a site is modified by a rate-specific factor, ρ j > 0.
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Fig. 6.3 Four-sequence tree, with branch lengths d1, d2, d3, and d4 leading to sequences S1, S2, S3,
and S4 and branch length d5 connecting the “ancestral” sequences S0 and S5.

Thus, the ingredients for the probability of a certain site pattern are available,

and

Pr
[

D j |τ, M, ρ j

]
, j = 1, . . . , l (6.11)

specifies the probability to observe pattern D j . If it is also assumed that each

sequence site evolves independently (i.e. according to τ and M, with a site specific

rate ρ j ), then the probability of observing the alignment (data) D = (D1, . . . , Dl )

equals the product of the probabilities at each site, as follows:

L (τ, M, ρ|D) ≡ Pr [D|τ, M, ρ] =
l∏

j=1

Pr
[

D j |τ, M, ρ j

]
(6.12)

When the data are fixed, (6.12) is again a likelihood function (like (6.2) and (6.5)),

which allows for the two ways of looking at it (see the previous section). First, for

a fixed choice of τ , M, and the site rate vector ρ, the probability to observe the

alignment D can be computed with (6.11). Second, for a given alignment D, (6.12)

can be used to find the MLEs.

In what follows, the two issues are treated separately. However, to simplify

the matter, it is assumed that the site-specific rate factor ρ j is drawn from a �-
distribution with expectation 1 and variance 1

α
(Uzzel & Corbin, 1971; Wakeley,

1993), where α defines the shape of the distribution (see also Section 4.6.1).

6.3 Computing the probability of an alignment for a fi xed tree

Consider the tree τ with its branch lengths (i.e. number of substitutions per site),

the model of sequence evolution M with its parameters (e.g. transition/transversion

ratio, stationary base composition), and the site-specific rate factor ρ j = 1 for each

site j . The goal is to compute the probability of observing one of the 4n possible

patterns in an alignment of n sequences. The tree displayed in Fig. 6.3 illustrates
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the principle for four sequences (n = 4). Because the model M is a submodel of

the GTR class – that is, a time-reversible model (see Chapter 4) – we can assign any

point as a root to the tree for the computation of its likelihood (Pulley Principle,

Felsenstein, 1981). Here, we will assume that evolution started from sequence S0

and then proceeded along the branches of tree τ with branch lengths d1, d2, d3, d4,

and d5. To compute Pr[D j , τ, M, 1] for a specific site j , where D j = (s j
1 , s j

2 , s j
3 , s j

4 )

are the nucleotides observed, it is necessary to know the ancestral states s j
0 and s j

5 .

The conditional probability of the data, given the ancestral states, then will be as

follows:

Pr
[

D j , τ, M, 1
∣∣s j

0 , s j
5

]
= Ps j

0 s j
1
(d1) · Ps j

0 s j
2
(d2) · Ps j

0 s j
5
(d5) · Ps j

5 s j
3
(d3) · Ps j

5 s j
4
(d4) (6.13)

The computation follows immediately from the considerations in Chapter 4. How-

ever, in almost any realistic situation, the ancestral sequences are not available.

Therefore, one sums over all possible combinations of ancestral states of nucleotides

gaining a so-called maximum average likelihood (Steel & Penny, 2000). As discussed

in Section 4.4, nucleotide substitution models assume stationarity; that is, the

relative frequencies of A, C, G, and T (πA, πC , πG , πT ) are at equilibrium. Thus,

the probability for nucleotide s j
0 will equal its stationary frequency π(s j

0 ), from

which it follows that

Pr
[

D j , τ, M, 1
]

=
∑

s j
0

∑
s j

5

π(s j
0 ) · Ps j

0 s j
1
(d1) · Ps j

0 s j
2
(d2) · Ps j

0 s j
5
(d5) · Ps j

5 s j
3
(d3) · Ps j

5 s j
4
(d4)

(6.14)

Although this equation looks like one needs to compute exponentially many sum-

mands, the sum can be efficiently assessed by evaluating the likelihoods moving

from the end nodes of the tree to the root (Felsenstein, 1981). In each step, start-

ing from the leaves of the tree, the computations for two nodes are joined and

replaced by the joint value at the ancestral node (see Section 6.3.1 for details).

This process bears some similarity to the computation of the minimal number

of substitutions on a given tree in the maximum parsimony framework (Fitch,

1971) (see Chapter 8). However, contrary to maximum parsimony, the distance

(i.e. number of substitutions) between the two nodes is considered. Under the

maximum parsimony framework, if two sequences share the same nucleotide, then

the most recent common ancestor also carries this nucleotide (see Chapter 8). In

the maximum-likelihood framework, this nucleotide is shared by the ancestor only

with a certain probability, which gets smaller if the sequences are only very remotely

related.
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6.3.1 Felsenstein’s pruning algorithm

Equation (6.14) shows how to compute the likelihood of a tree for a given position

in a sequence alignment. To generalize this equation for more than four sequences,

it is necessary to sum all the possible assignments of nucleotides at the n − 2

inner nodes of the tree. Unfortunately, this straightforward computation is not

feasible, but the amount of computation can be reduced considerably by noticing

the following recursive relationship in a tree. Let D j = (s j
1 , s j

2 , s j
3 , . . . , s j

n ) be a

pattern at a site j , with tree τ and a model M fixed. Nucleotides at inner nodes of

the tree are abbreviated as xi with i = n + 1, . . . , 2n − 2. For an inner node i with

offspring o1 and o2, the vector (Li
j = L i

j (A), L i
j (C), L i

j (G), L i
j (T)) is defined

recursively as

L i
j (s ) =


 ∑

x∈{A,C,G,T}
Ps x (do1 )L o1

j (x)


 ·

 ∑

x∈{A,C,G,T}
Ps x (do2 )L o2

j (x)




s ∈ {A, C, G, T} (6.15)

and for the leaves

L i
j (s ) =

{
1, if s = s j

i

0, otherwise
(6.16)

where do1 and do2 are the number of substitutions connecting node i and its

descendants in the tree (Fig. 6.4). Without loss of generality, it is assumed that

the node 2n − 2 has three offspring: o1, o2, and o3, respectively. For this node,

(6.15) is modified accordingly. This equation allows an efficient computation of

the likelihood for each alignment position (Fig. 6.4) by realizing that

Pr
[

D j , τ, M, 1
] =

∑
s∈{A,C,G,T}

πs L 2n−2
j (s ) (6.17)

Equation (6.17) then can be used to compute the likelihood of the full alignment

with the aid of (6.12). In practice, the calculation of products is avoided, moving

instead to log-likelihoods; that is, (6.12) becomes

log [L (τ, M, 1)] = log


 l∏

j=1

Pr
[

D j , τ, M, 1
]

=
l∑

j=1

log
[
Pr
[

D j , τ, M, 1
]]

(6.18)
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Fig. 6.4 Likelihood computation on a four-taxa tree for an alignment site pattern Dj = (C, G, C, C)
with all branch lengths d1, . . . d5 set to 0.1. According to (6.8) the probability to observe no
mutation after d = 0.1 is 0.9058 and for a specific nucleotide pair 0.0314. The values Li

j(s)
at the leaves are computed with (6.16), those at the internal nodes with (6.15). For exam-
ple, to obtain L5

j(C) at node five, (6.15) reduces to PCC(d1)·PCG(d2) = 0.9058 ·0.0314.
The position likelihood according to (6.17) is 0.0054886, the according log-likelihood
is –5.2051.

6.4 Finding a maximum-likelihood tree

Equations (6.15) through (6.18) show how to compute the probability of an align-

ment, if everything were known. In practice, however, branch lengths of the tree are

unknown. Branch lengths are computed numerically by maximizing (6.18); that is,

by finding those branch lengths for tree τ maximizing the log-likelihood function,

which is accomplished by applying numerical routines like Newton–Raphson or

Brent’s method (Press et al., 1992). Such a computation is usually time-consuming

and typically the result depends on the numerical method.

Nevertheless, maximizing the likelihood for a single tree is not the biggest chal-

lenge in phylogenetic reconstruction; the daunting task is to actually find the tree

among all possible tree structures that maximizes the global likelihood. Unfortu-

nately, for any method that has an explicit optimality criterion (e.g. maximum

parsimony, distance methods, and maximum-likelihood), no efficient algorithms

are known that guarantee the localization of the best tree(s) in the huge space of

all possible tree topologies. The naı̈ve approach to simply compute the maximum-

likelihood value for each tree topology is prohibited by the huge number of tree

structures, even for moderately sized data sets. The number of (unrooted) binary
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tree topologies increases tremendously with the number of taxa (n), which can be

computed according to

tn = (2n − 5)!

2n−3(n − 3)!
=

n∏
i=1

(2i − 5) (6.19)

When computing the maximum-likelihood tree, the model parameters and branch

lengths have to be computed for each tree, and then the tree that yields the high-

est likelihood is selected. Because of the numerous tree topologies, testing all

possible trees is impossible, and it is also computationally not feasible to esti-

mate the model parameters for each tree. Thus, various heuristics are used to

suggest reasonable trees, including stepwise addition (e.g. used in Felsenstein’s

Phylip package: program DNAml, Felsenstein, 1993) and star decomposition
(Molphy, Adachi & Hasegawa, 1996) as well as the neighbor-joining (NJ) algo-

rithm (Saitou & Nei, 1987). Stepwise addition and NJ are discussed in Chapter 8

and Chapter 5, respectively. However, to make this chapter self-consistent we briefly

summarize the various heuristics. In our parlance, we are looking for the tree with

the highest likelihood. However, the tree rearrangement operations themselves are

independent of the objective function.

6.4.1 Early heuristics

Stepwise addition was probably among the first heuristics to search for a maximum-

likelihood of a tree. The procedure starts from the unrooted tree topology for

three taxa randomly selected from the list of n taxa. Then one reconstructs the

corresponding maximum likelihood tree. To extend this tree we randomly pick

one of the remaining n − 3 taxa. This taxon is then inserted into each branch of the

best tree. The branch, where the insertion leads to the highest likelihood, will be

called insertion branch. Thus, we have a local decision criterion that selects the tree

with the highest likelihood from a list of 2k − 3 trees, if k taxa are already in the

sub-tree. The resulting tree will then be used to repeat the procedure. After n − 3

steps, a maximum-likelihood tree is obtained, that is at least locally optimal. That

means given the insertion order of the taxa and given the local decision criterion

no better tree is possible.

However, we have only computed the maximum-likelihood for
∑n

i=3(2i − 5) =
(n − 2)2 trees. Thus, it is possible that another insertion order of the taxa will

provide trees with a higher likelihood. To reduce the risk of getting stuck in such

local optima, tree-rearrangement operations acting on the full tree were suggested.

6.4.2 Full-tree rearrangement

Full-tree rearrangement operations change the structure of a given tree with n

leaves. They employ the following principle. From a starting tree a number of trees

(the neighborhood of the starting tree) are generated according to specified rules.
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Fig. 6.5 The three basic tree rearrangement operations (NNI, SPR, and TBR) on the thick branch in
the full tree. In SPR and TBR all pairs of “circled” branches among the two subtrees will be
connected (dashed lines), except the two filled circles to each other, since this yields the
full tree again.

For each resulting tree, the maximum-likelihood value is computed. The tree with

the highest likelihood is then used to repeat the procedure. The rearrangement

typically stops if no better tree is found. This tree is then said to be a locally optimal

tree. The chance of actually having determined the globally optimal tree, however,

depends on the data and the size of neighborhood.

Three full-tree rearrangement operations are currently popular: Nearest neigh-
bor interchange (NNI), sub-tree pruning and regrafting (SPR) and tree-bisection
and reconnection (TBR), confer Fig. 6.5 and see Chapter 8 for more details.

Depending on the operation, the size of the neighborhood grows linearly (NNI),

quadratically (SPR), or cubically (TBR) with the number of taxa in the full tree.

Different approaches are applied to limit the increase of computation time of

the SPR or TBR, while still taking advantage of their extended neighborhood. We

will briefly describe some programs and search schemes. Some of these packages

have implemented different variants and extensions of the insertion or rearrange-

ment operations. We will not explain them in full detail, but rather refer to the

corresponding publications.

6.4.3 DNAML and FASTDNAML

The DNAml program (Phylip package, Felsenstein, 1993) and its descendant,

fastDNAml (Olsen et al., 1994; Stewart et al., 2001), search by stepwise addition.
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Although not turned on by default, the programs allow to apply SPR rearrange-

ments after all sequences have been added to the tree.

Moreover, fastDNAml provides tools to do full tree rearrangements after each

insertion step. The user may choose either NNI or SPR, and can also restrict the

SPR neighborhood by setting a maximal number of branches to be crossed between

pruning and inserting point of the subtree.

6.4.4 PHYML and PHYML-SPR

PhyML (Guindon & Gascuel, 2003) reduces the running time by a mixed strategy.

It uses a fast distance based method, BioNJ (Gascuel, 1997), to quickly compute a

full initial tree. Then they apply fastNNI operations to optimize that tree. During

fastNNI all possible NNI trees are evaluated (optimizing only the branch crossed

by the NNI) and ranked according to their ML value. Those NNIs which increase

the ML value most, but do not interfere with each other, are simultaneously applied

to the current tree. Simultaneously applying different NNIs saves time and makes

it possible to walk quickly through tree space. On the new current tree fastNNI is

repeated until no ML improvement is possible.

Due to their limited range of topological changes NNIs are prone to get stuck in

local optima. Hence, a new SPR-based version, PhyML-SPR (Hordijk & Gascuel,

2006), has been devised taking advantage of the larger neighborhood induced by

SPR. To compensate for the increased computing time, PhyML-SPR evaluates

the SPR neighborhood of the current tree by fast measures like distance-based

approaches to determine a ranked list of most promising SPR tree candidates

(Hordijk & Gascuel, 2006; for more details). Their likelihood is then assessed by

only optimizing the branch lengths on the path from the pruning to the insertion

point. If a better tree is found, it takes the status of new current tree.

A fixed number of best candidate trees according to their likelihood are then

optimized by adjusting all branch lengths. If now a tree has a higher likelihood than

the current one, this tree replaces the old one.

PhyML-SPR allows to alternate SPR and fastNNI-based iterations. Iteration

continues until no better tree is found.

6.4.5 IQPNNI

Iqpnni (Vinh & von Haeseler, 2004) uses BioNJ (Gascuel, 1997) to compute the

starting tree and fastNNI for likelihood optimization. Iqpnni, however, applies a

different strategy to reduce the risk of getting stuck in local optima. When the

current tree cannot be improved anymore, Iqpnni randomly removes taxa from

the current tree and re-inserts them using a fast quartet-based approach. The new

tree is again optimized with fastNNI. If the new tree is better, it then becomes the

new starting tree, otherwise the original current tree is kept.
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This procedure is either repeated for a user-specified number of iterations or

Iqpnni applies a built-in stopping rule, that uses a statistical criterion, to abandon

further search (Vinh & von Haeseler, 2004).

Furthermore, Iqpnni provides ML tree reconstruction for various codon models

like Goldman & Yang (1994) or Yang & Nielsen (1998). Refer to Chapter 14 for

details on such complex models.

6.4.6 RAXML

The RAxML program (Stamatakis, 2006) builds the starting tree based on maxi-

mum parsimony (Chapter 8) and optimizes with a variant of SPR called lazy subtree

rearrangement (LSR, Stamatakis et al., 2005). LSR combines two tricks to reduce

the computational demand of SPR operations. First, it assigns a maximal distance

between pruning and insertion point for the SPR operations to restrict the size of

the neighborhood. The maximal SPR distance (< 25 branches) is determined at

the start of the program. Second, LSR optimizes only the branch that originates

at the pruning point and the three newly created at the insertion point. The LSRs

are repeated many times always using the currently best tree. For the 20 best trees,

found during the LSR, the final ML-value is re-optimized by adjusting all branch

lengths. The LSR and re-optimization is repeated until no better tree is found.

6.4.7 Simulated annealing

Simulated annealing (Kirkpatrick et al., 1983) is an attempt to find the maximum

of complex functions (possibly with multiple peaks), where standard (hill climbing)

approaches may get trapped in local optima. One starts with an initial tree, then

samples the tree-space by accepting with a reasonable probability a tree with a

lower likelihood (down-hill move). Trees with higher likelihood (up-hill moves)

are always accepted. This is conceptually related to Markov chain Monte Carlo (see

Chapters 7 and 18). However, as the process continues the down-hill probability

is decreased. This decrease is modeled by a so-called cooling schedule. The term

“annealing” is borrowed from crystal formation. Initially (high temperature) there

is a lot of movement (almost every tree is accepted), then as the temperature is

lowered the movements get smaller and smaller. If the decrease in temperature is

modeled adequately, then the process will eventually find the ML tree. However, to

model the decrease in temperature is not trivial.

First introduced in a parsimony context (Lundy, 1985; Dress & Krüger, 1987),

simulated annealing to reconstruct ML trees is applied by Ssa (Salter & Pearl,

2001) and RAxML-SA (Stamatakis, 2005). Furthermore, Fleissner et al. (2005) use

simulated annealing to construct alignments and trees simultaneously.
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6.4.8 Genetic algorithms

Genetic algorithms (GA) are an alternative search technique to solve complex

optimization problems. They borrow the nomenclature and the optimization deci-

sion from evolutionary biology. In fact, GA are a special category of evolutionary

algorithms (Bäck & Schwefel, 1993).

The basic ingredients of GA are a population of individuals (in our case a

collection of trees) a fitness function (maximum likelihood function according

to (6.17)) that determines the offspring number. According to the principles of

evolution a tree can mutate (change in branch lengths, NNI, SPR, TBR operations),

even trees can exchange sub-trees (recombination). For the mutated tree, the fitness

function is computed. The individuals of the next generation are then randomly

selected from the mutant trees and the current non-mutated trees according to

their fitness (selection step). Typically, one also keeps track of the fittest individual

(the tree with the best likelihood). After several generations, evolution stops and

the best tree is output.

After having been introduced to phylogenetics in the mid-1990s (e.g.

Matsuda, 1995), Garli (Zwickl, 2006), Metapiga (Lemmon & Milinkovitch,

2004), and Gaml (Lewis, 1998) are examples for applications of GA in phylogenetic

inference.

6.5 Branch support

As should be clear by now, none of the above methods guarantee to detect the

optimal tree. Hence, biologists usually apply a plethora of methods, and if those

reconstruct similar trees one tends to have more confidence in the result.

Typically, tree reconstruction methods are searching for the best tree, leaving the

user with a single tree and ML value, but without any estimate of the reliability of

its sub-trees.

Several measures are used to assess the certainty of a tree or its branches. The

ML values from competing hypotheses can be used in a likelihood ratio test (LRT,

see Chapters 10, 11, and 14) or other tests (Chapter 12).

The support of branches are often assessed by employing statistical principles.

The most widely used approach to assess branch support seems to be bootstrapping
(Efron, 1979; Felsenstein, 1985), where pseudo-samples are created by randomly

drawing with replacement l columns from the original l-column alignment, i.e.

a column from the data alignment can occur more than once or not at all in a

pseudo-sample. From each pseudo-sample a tree is reconstructed and a consensus

tree is constructed, incorporating those branches that occur in the majority of the

reconstructed trees. These percentages are used as indicator for the reliability of

branches. See Chapter 5 for details on branch support analysis using the bootstrap.
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Fig. 6.6 The three different informative tree topologies for the quartet q = (A, B, C, D).

Very similar to the bootstrap is jackknifing, where only a certain percentage of

the columns are drawn without replacement (Quenouille, 1956).

Finally, the trees sampled in a Bayesian MCMC analysis are usually summarized

in a consensus tree and the tree sample can be used to derive approximate posterior
probabilities for each split or clade (Ronquist & Huelsenbeck, 2003; see also next

chapter).

Another method to measure branch support is the quartet puzzling method

implemented in the Tree-Puzzle software, that will be explained in the following

section. Although Tree-Puzzle is nowadays not faster than most of the above

mentioned ML methods, it is usually faster than running at least 100 bootstraps

with an ML method and certainly faster than a Bayesian MCMC analysis.

6.6 The quartet puzzling algorithm

Quartet puzzling (Strimmer & von Haeseler, 1996) utilizes quartets, i.e. groups

of four sequences. Quartets are the smallest set of taxa for which more than one

unrooted tree topology exists. The three different quartet tree topologies are shown

in Fig. 6.6. Quartet-based methods use the advantage that the quartet trees can be

quickly evaluated with maximum-likelihood. However, there exist
(n

4

) = n!
4!(n−4)!

possible quartets in a set of n taxa.

Quartet puzzling is performed in four steps.

6.6.1 Parameter estimation

First Tree-Puzzle estimates the parameters for the evolutionary model. To this

end:

(i) The pairwise distance matrix D is estimated for all pairs of sequences in the input
alignment and a Neighbor Joining tree is constructed from D.

(ii) Then, maximum-likelihood branch lengths are computed for the NJ topology and
parameters of the sequence evolution are estimated.

(iii) Based on these estimates, a new D and NJ tree are computed and Step (ii) is
repeated.

Steps (ii) and (iii) are repeated until the estimates of the model parameters are

stable.
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6.6.2 ML step

To produce the set of tree topologies, the likelihoods of all 3 × (n
4

)
quartet tree

topologies are evaluated. Then, for each quartet and each topology the corre-

sponding highest likelihood is stored. The algorithm takes into account that two

topologies may have similar likelihoods (partly resolved quartet) or that even no

topology (unresolved quartet) gains sufficient support (Strimmer et al., 1997).

6.6.3 Puzzling step

Based on the set of supported quartet topologies, trees are constructed by adding

taxa in random order. Each taxon is inserted into that branch least contradicted by

the set of relevant quartet trees.

This step is repeated many times with different input orders, producing a large

set of intermediate trees.

6.6.4 Consensus step

The set of intermediate trees is subsequently summarized by a majority rule con-

sensus tree, the so-called quartet puzzling tree, where the percent occurrences for

each branch are considered puzzle support values.

6.7 Likelihood-mapping analysis

The chapter so far has discussed the problem of reconstructing a phylogenetic tree

and assessing the reliability of its branches. A maximum-likelihood approach may

also be used to study the amount of evolutionary information contained in a data

set. The analysis is based on the maximum-likelihood values for the three possible

four taxa trees. If L 1, L 2, and L 3 are the likelihoods of trees T1, T2, and T3, then one

computes the posterior probabilities of each tree Ti as pi = L i

L 1+L 2+L 3
. Since the pi

terms sum to 1, the probabilities p1, p2, and p3 can be reported simultaneously as a

point P lying inside an equilateral triangle, each corner of the triangle representing

one of the three possible tree topologies (Fig. 6.7a). If P is close to one corner – for

example, the corner T1 – the tree T1 receives the highest support. In a maximum-

likelihood analysis, the tree Ti , which satisfies pi = max{p1, p2, p3}, is selected

as the MLE. However, this decision is questionable if P is close to the center of

the triangle. In that case, the three likelihoods are of similar magnitude; in such

situations, a more realistic representation of the data is a star-like tree rather than

an artificially strictly bifurcating tree (see Section 1.7 in Chapter 1).

Therefore, the likelihood-mapping method (Strimmer & von Haeseler, 1997)

partitions the area of the equilateral triangle into seven regions (Fig. 6.7b). The

three trapezoids at the corners represent the areas supporting strictly bifurcating

trees (i.e. Areas 1, 2, and 3 in Fig. 6.7b). The three rectangles on the sides represent
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Fig. 6.7 Likelihood mapping. (a) The three posterior probabilities p1, p2, and p3 for the three pos-
sible unrooted trees of four taxa are reported as a point (P) inside an equilateral triangle,
where each corner represents a specific tree topology with likelihood L1, L2, and L3, respec-
tively. (b) Seven main areas in the triangle supporting different evolutionary information.

regions where the decision between two trees is not obvious (i.e. Areas 4, 5, and

6 in Fig. 6.7b for trees 1 and 2, 2 and 3, and 3 and 1). The center of the triangle

represents sets of points P where all three trees are equally supported (i.e. Area 7

in Fig. 6.7b). Given a set of n aligned sequences, the likelihood-mapping analysis

works as follows. The three likelihoods for the three tree topologies of each possible

quartet (or of a random sample of the quartets) are reported as a dot in an equilateral

triangle like the one in Fig. 6.7a. The distribution of points in the seven areas of

the triangle (see Fig. 6.7b) gives an impression of the tree-likeness of the data. Note

that, because the method evaluates quartets computed from n sequences, which
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one of the three topologies is supported by any corner of the triangle is not relevant.

Only the percentage of points belonging to the areas 1, 2, and 3 is relevant to get an

impression about the amount of tree-likeness in the data. To summarize the three

corners (Areas 1 + 2 + 3; see Fig. 6.7b) represent fully resolved tree topologies;

Area 7 represents star-like phylogenies (Fig. 6.7b); the three Areas 4 + 5 + 6 (see

Fig. 6.7b) represent network-like phylogeny, where the data support conflicting

tree topologies (see also Chapter 21).

From a biological standpoint, a likelihood mapping analysis showing more than

20%–30% of points in the star-like or network-like area suggests that the data are

not reliable for phylogenetic inference. The reasons why an alignment may not

be suitable for tree reconstruction are multiple, e.g. noisy data, alignment errors,

recombination, etc. In the latter case, methods that explore and display conflicting

trees, such as bootscanning (see Chapter 16), split decomposition or Neighbor-

Net (see Chapter 21 for network analysis) may give additional information. A

more detailed study on quartet mapping is given in Nieselt-Struwe & von Haeseler

(2001).
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6.8 Software packages

A number of software packages are available to compute maximum-likelihood

trees from DNA or amino acid sequences. A detailed list can be found at Joe

Felsenstein’s website, http://evolution.genetics.washington.edu/PHYLIP/software.
html.

Because program packages are emerging at a rapid pace, the reader is advised to

visit this website for updates.

6.9 An illustrative example of an ML tree reconstruction

In what follows, the hivALN.phy file (available at http://www.
thephylogenetichandbook.org) will be analyzed with the latest version 3.2

of Iqpnni (Vinh & von Haeseler, 2004) to infer a maximum likelihood tree

and Tree-Puzzle 5.3 (Schmidt et al., 2002) to compute support values for the

branches of the ML tree.

6.9.1 Reconstructing an ML tree with IQPNNI

Place the hivALN.phy file in the same folder as the IqpnNI executable and start

iqpnni. The following text appears:

WELCOME TO IQPNNI 3.2 (sequential version)

Please enter a file name for the sequence data:

Type the filename hivALN.phy and press enter.

GENERAL OPTIONS

o Display as outgroup? L20571

n Number of iterations? 200

s Stopping rule? No, stop after 200 iterations

IQP OPTIONS

p Probability of deleting a sequence? 0.3

k Number representatives? 4

SUBSTITUTION PROCESS

d Type of sequence input data? Nucleotides

m Model of substitution? HKY85 (Hasegawa et al. 1985)

t Ts/Tv ratio (0.5 for JC69)? Estimate from data

f Base frequencies? Estimate from data

199
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RATE HETEROGENEITY

r Model of rate heterogeneity? Uniform rate

quit [q], confirm [y], or change [menu] settings:

Each option can be selected to change the setting by typing the corresponding

letter. For example, if the user types m then each keystroke will change the model

of sequence evolution. After a number of strokes the default HKY85 reappears.

The letter n allows to change the number of iterations. By default the number of

iterations is set to twice the number of sequences. The user is advised to set the

limit as high as possible (at least 200) or to use the stopping rule.

For example, a typical run to infer a tree based on DNA sequences would start

with the following setting:

GENERAL OPTIONS

o Display as outgroup? L20571

n Number of iterations? 200

s Stopping rule? No, stop after 200 iterations

IQP OPTIONS

p Probability of deleting a sequence? 0.3

k Number representatives? 4

SUBSTITUTION PROCESS

d Type of sequence input data? Nucleotides

m Model of substitution? HKY85 (Hasegawa et al. 1985)

t Ts/Tv ratio (0.5 for JC69)? Estimate from data

f Base frequencies? Estimate from data

RATE HETEROGENEITY

r Model of rate heterogeneity? Gamma distributed rates

i Proportion of invariable sites? No

a Gamma distribution parameter alpha? Estimate from data

c Number of Gamma rate categories? 4

quit [q], confirm [y], or change [menu] settings:

Entering y starts the program. As model of sequence evolution HKY is selected

(see Sections 4.6 and 4.9 in Chapter 4). Rate heterogeneity is modeled with a �-

distribution. The shape parameter α of the �-distribution is estimated with the aid

of four discrete categories (see Section 4.6.1). An appropriate model can also be

selected based on one of the approaches discussed in Chapter 10.

Iqpnni also infers trees from amino acid sequence alignments and it is

possible to compute trees from coding DNA sequences using different codon

models.
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During the optimization messages like

(1) Optimizing gamma shape parameter ...

Gamma distribution shape = 0.57224

Optimizing transition/transversion ratio ...

Transition/transversion ratio: 1.7074

LogL = -17408.85673

(2) Optimizing gamma shape parameter ...

Gamma distribution shape = 0.54188

Optimizing transition/transversion ratio ...

Transition/transversion ratio: 1.7951

LogL = -17396.4208

will appear.

After optimizing the model parameters the Iqpnni continues with the tree search

as described. Whenever a better tree is found Iqpnni outputs

Doing Nearest Neighbour Interchange... 1 s

We have constructed the initial tree !!!

The currently best log likelihood = -17395.94491

29 Iterations / time elapsed = 0h:0m:8s (will finish in 0h:0m:47s)

GOOD NEWS: BETTER TREE FOUND: THE CURRENTLY BEST LOG LIKELIHOOD = -

17392.7264

76 Iterations / time elapsed = 0h:0m:19s (will finish in 0h:0m:31s)

120 Iterations / time elapsed = 0h:0m:30s (will finish in 0h:0m:20s)

179 Iterations / time elapsed = 0h:0m:41s (will finish in 0h:0m:4s)

200 Iterations / time elapsed = 0h:0m:45s

Looking at the output above highlights that Iqpnni could well escape the

local optimum it was stuck for the first 28 iterations. Strategies only based on

BioNJ and fastNNI like the original PhyML strategy, which is roughly equiva-

lent to the reconstruction of the initial tree, would have finished on that local

optimum.

Then Iqpnni optimizes the model parameters as described above and re-

estimates the likelihood of the final tree:

Optimizing the final tree topology as well as branch lengths...

Final best log likelihood: -17392.72496

Constructing the majority rule consensus tree...

Estimating site rates by empirical Bayesian...

The results were written to following files:

1. hivALN.phy.iqpnni

2. hivALN.phy.iqpnni.treefile

3. hivALN.phy.iqpnni.treels

4. hivALN.phy.iqpnni.rate

Total Runtime: 0h:0m:46s

Finished!!!
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Fig. 6.8 ML-tree reconstructed with Iqpnni (a) and the quartet puzzling consensus tree (b) for the
HIV/SIV data set. The major groups of HIV-1 and the Group M subtypes are indicated in
bold, the puzzle support values are given at the branches.

The outfile of Iqpnni, a text file here called hivALN.phy.iqpnni, summa-

rizes the results of the phylogenetic analyses.hivALN.phy.iqpnni.treefile

contains the ML tree in NEWICK format. The tree can be displayed using the Tree-

View and FigTree program. The reconstructed tree is shown in Fig. 6.8a.

Valuable information can be obtained from the stopping rule even if the analysis

is not finished by the stopping rule: If more than three times a better tree has been

found during the iterations, Iqpnni estimates how many additional iterations are

necessary to be sure according to a 5% confidence level that the current search will

not produce a tree with a better likelihood. If the rule suggests more iterations than

executed, one is advised to re-run the analysis. Iqpnni also offers the option to

continue the current analysis (see the Iqpnni manual for details).

Repeating the example will produce slightly different output, that means, the

best tree might be found in different iterations. This is due to the stochastic compo-

nent in the Iqpnni procedure (Section 6.4.5) when randomly removing and then

re-inserting taxa into the tree.
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6.9.2 Getting a tree with branch support values using quartet puzzling

Most tree reconstruction methods output only a tree topology but do not provide

information about the significance of the branching pattern.

Here, we will analyze the above data with Tree-Puzzle to get support values for

the Iqpnni tree.

To do this, place the hivALN.phy file (available at http://www.
thephylogenetichandbook.org) in the same folder as the Tree-Puzzle binary and

run the executable. The following text appears:

WELCOME TO TREE-PUZZLE 5.3.

Please enter a file name for the sequence data:

Type the filename hivALN.phy and press enter.

Input data set (hivALN.phy) contains 14 sequences of length 2352

1. L20571

2. AF103818

3. X52154

4. U09127

5. U27426

6. U27445

7. AF067158

8. U09126

9. U27399

10. U43386

11. L02317

12. AF025763

13. U08443

14. AF042106

(consists very likely of nucleotides)

GENERAL OPTIONS

b Type of analysis? Tree reconstruction

k Tree search procedure? Quartet puzzling

v Quartet evaluation criterion? Approximate maximum likeli-

hood (ML)

u List unresolved quartets? No

n Number of puzzling steps? 1000

j List puzzling step trees? No

9 List puzzling trees/splits (NEXUS)? No

o Display as outgroup? L20571 (1)

z Compute clocklike branch lengths? No

e Parameter estimates? Approximate (faster)

x Parameter estimation uses? Neighbor-joining tree
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SUBSTITUTION PROCESS

d Type of sequence input data? Auto: Nucleotides

h Codon positions selected? Use all positions

m Model of substitution? HKY (Hasegawa et al. 1985)

t Transition/transversion parameter? Estimate from data set

f Nucleotide frequencies? Estimate from data set

RATE HETEROGENEITY

w Model of rate heterogeneity? Uniform rate

Quit [q], confirm [y], or change [menu] settings:

Each option can be selected and changed by typing the corresponding

letter. For example, if the user types b repeatedly, then the option will

change from Tree reconstruction to Likelihood mapping to Tree

reconstruction again. The letter k cycles from Quartet puzzling to

Evaluate user defined trees to Consensus of user defined

trees to Pairwise distances only (no tree). A typical run to infer

a tree based on DNA sequences starts with the following setting:

GENERAL OPTIONS

b Type of analysis? Tree reconstruction

k Tree search procedure? Quartet puzzling

v Quartet evaluation criterion? Approximate maximum likeli-

hood (ML)

u List unresolved quartets? No

n Number of puzzling steps? 10000

j List puzzling step trees? No

9 List puzzling trees/splits (NEXUS)? No

o Display as outgroup? L20571 (1)

z Compute clocklike branch lengths? No

e Parameter estimates? Approximate (faster)

x Parameter estimation uses? Neighbor-joining tree

SUBSTITUTION PROCESS

d Type of sequence input data? Auto: Nucleotides

h Codon positions selected? Use all positions

m Model of substitution? HKY (Hasegawa et al. 1985)

t Transition/transversion parameter? Estimate from data set

f Nucleotide frequencies? Estimate from data set

RATE HETEROGENEITY

w Model of rate heterogeneity? Gamma distributed rates

a Gamma distribution parameter alpha? Estimate from data set

c Number of Gamma rate categories? 8

Quit [q], confirm [y], or change [menu] settings:
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By entering y, Tree-Puzzle computes a quartet puzzling tree based on 10 000

intermediate trees, using approximate likelihoods to estimate the quartet trees.

The model parameter estimates are also approximated and are based on an NJ tree

computed at the beginning of the optimization routine. In the example, the HKY

model is selected (see Sections 4.6 and 4.9). Again, �-distributed rate heterogeneity

among sites is modeled, where the shape parameter α is estimated with the aid of

eight discrete categories (see Section 4.6.1). If these settings are confirmed (type

“y”), the following output will appear on the screen:

Optimizing missing substitution process parameters

Optimizing missing rate heterogeneity parameters

Optimizing missing substitution process parameters

Optimizing missing rate heterogeneity parameters

Optimizing missing substitution process parameters

Optimizing missing rate heterogeneity parameters

Writing parameters to file hivALN.phy.puzzle

Writing pairwise distances to file hivALN.phy.dist

Computing quartet maximum likelihood trees

Computing quartet puzzling trees

Computing maximum likelihood branch lengths (without clock)

All results written to disk:

Puzzle report file: hivALN.phy.puzzle

Likelihood distances: hivALN.phy.dist

Phylip tree file: hivALN.phy.tree

The parameter estimation took 11.00 seconds (= 0.18 min-

utes = 0.00 hours)

The ML step took 8.00 seconds (= 0.13 minutes = 0.00 hours)

The puzzling step took 2.00 seconds (= 0.03 minutes = 0.00 hours)

The computation took 23.00 seconds (= 0.38 minutes = 0.01 hours)

including input 272.00 seconds (= 4.53 minutes = 0.08 hours)

The puzzle report file hivALN.phy.puzzle, the most important file, sum-

marizes all results of the phylogenetic analyses. Because the content of the report

file is self-explanatory, it is not discussed here. hivALN.phy.dist contains the

matrix of pairwise distances based on the model parameters.hivALN.phy.tree

contains the quartet puzzling tree (Fig. 6.8b) in NEWICK notation that can be dis-

played with the TreeView or FigTree program (see Chapter 5).

Tree-Puzzle can output all the different tree topologies computed during

puzzling steps (option j). In the HIV example, 685 different intermediate trees

were found, in which the most frequent tree occurred at about 6.6%. Therefore,

the quartet puzzling algorithm can be used to generate a collection of plausible

candidate trees, and this collection can subsequently be employed to search for
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the most likely tree. It is known that the consensus tree does not necessarily coin-

cide with the maximum-likelihood tree, especially when the consensus is not fully

resolved (Cao et al., 1998). Thus, to get the maximum-likelihood tree option j

should be changed to unique topologies, which will be output in the .ptorder

file. A typical line of this file looks like the following:

[1. 657 6.57 14 68510000](L20571,((AF10138,X52154),

(U09127,(((U27426,U27445), (U067158,U09126)),

((U27399,U43386),(((L02317,AF042106),AF025763),

U08443))))));

The first column is a simple numbering scheme, in which each tree is numbered

according to its frequency (i.e. second column and third column). Column four

(14) gives the first time among 10 000 (column 6) puzzling steps, when the tree

was found. Column five shows how many different trees were found (685).

If one enables option 9 before running the analysis, Tree-Puzzle also outputs

all splits and trees in NEXUS format to the file hivALN.phy.nex which can be

analyzed with the SplitsTree software (see Chapter 21).

Similar to bootstrap analysis (Chapter 5), the resulting intermediate trees and,

hence, the resulting support values might differ slightly due to the randomization

of the insertion order in the puzzling step (Section 6.6). Consequently, the number

of unique intermediate tree topologies and their percentages will also vary slightly.

Please note, the intermediate tree found most often does not necessarily coincide

with the maximum-likelihood tree, but often the ML tree is among the intermediate

trees.

To compute the maximum-likelihood tree among all intermediate trees, run

Tree-Puzzle again with the following settings:

GENERAL OPTIONS

b Type of analysis? Tree reconstruction

k Tree search procedure? Evaluate user defined trees

z Compute clocklike branch lengths? No

e Parameter estimates? Approximate (faster)

x Parameter estimation uses? Neighbor-joining tree

SUBSTITUTION PROCESS

d Type of sequence input data? Auto: Nucleotides

h Codon positions selected? Use all positions

m Model of substitution? HKY (Hasegawa et al., 1985)

t Transition/transversion parameter? Estimate from data set

f Nucleotide frequencies? Estimate from data set
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RATE HETEROGENEITY

w Model of rate heterogeneity? Gamma distributed rates

a Gamma distribution parameter alpha? Estimate from data set

c Number of Gamma rate categories? 8

Quit [q], confirm [y], or change [menu] settings: y

Now Tree-Puzzle will compute the maximum-likelihood values for all inter-

mediate trees using the model parameter estimates from the iterative procedure.

The computation takes time, but it provides more insight about the data and like-

lihood surface of the trees. The resulting .puzzle file shows the results of the ML

analysis for the different topologies at the end of the file. In addition, the likelihoods

of the trees are compared by various tests (see Chapter 12 for details).

6.9.3 Likelihood-mapping analysis of the HIV data set

Option b in the GENERAL OPTIONSmenu of Tree-Puzzle switches from Tree

reconstruction to Likelihood mapping. When the number of quartets

for the data is below 10 000, the program computes the posterior probabilities of

the quartet trees (see Section 6.7) for all quartets; otherwise, only the posterior

probabilities for 10 000 random quartets are computed. In the latter case, the

user can decide how many quartets to evaluate by selecting from the GENERAL

OPTIONS menu option n, number of quartets, and typing the number. Typing

0 forces Tree-Puzzle to analyze all the possible quartets; however, this is time-

consuming for large data sets. A random selection serves the same purpose.

Box 6.1 shows part of the outfile from the likelihood-mapping analysis of the

1001 possible quartets for the HIV data set. Some 92.72% of all quartets are tree-

like, i.e. they are located close to the corners of the triangle. Only 4.4% of all

quartets lie in the rectangles and 2.9% in the central triangle: they represent the

unresolved part of the data. Because most of the quartets are tree-like and only a

fraction of about 7% do not support a unique phylogeny, an overall phylogenetic

tree with a good resolution is expected. Nevertheless, the percentages of up to 4.4%

unresolved and 2.9% partly resolved quartets still implies a considerable amount

of noisy or conflicting signal in the data set.

Please note that, if the likelihood mapping is repeated on a random subset, the

resulting percentages may naturally differ slightly.

6.10 Conclusions

The HIV quartet puzzling consensus tree (Fig. 6.8b) calculated in the previous

section is well resolved for the most part and all resolved clusters coincide with



208 Heiko A. Schmidt and Arndt von Haeseler

Box 6.1 Likelihood-mapping analysis with Tree-Puzzle

Tree-Puzzle writes results of the likelihood-mapping analysis at the end of the report file
hivALN.phy.puzzle in the LIKELIHOOD MAPPING STATISTICS section. The
results are given for the whole data set and also for each sequence to help with identifying
outliers. For example, for the HIV data set (alignment: hivALN.phy; substitution
model: HKY with �-distributed rate heterogeneity, parameters estimated via maximum
likelihood):

LIKELIHOOD MAPPING STATISTICS

[...]

Quartet resolution per sequence:

name #quartets resolved partly unresolved

--------------------------------------------------------------------

1 L20571 286 261 ( 91.26) 12 ( 4.20) 13 ( 4.55)

2 AF103818 286 271 ( 94.76) 14 ( 4.90) 1 ( 0.35)

3 X52154 286 260 ( 90.91) 13 ( 4.55) 13 ( 4.55)

4 U09127 286 255 ( 89.16) 17 ( 5.94) 14 ( 4.90)

5 U27426 286 260 ( 90.91) 15 ( 5.24) 11 ( 3.85)

6 U27445 286 273 ( 95.45) 11 ( 3.85) 2 ( 0.70)

7 AF067158 286 261 ( 91.26) 18 ( 6.29) 7 ( 2.45)

8 U09126 286 263 ( 91.96) 13 ( 4.55) 10 ( 3.50)

9 U27399 286 270 ( 94.41) 9 ( 3.15) 7 ( 2.45)

10 U43386 286 264 ( 92.31) 8 ( 2.80) 14 ( 4.90)

11 L02317 286 268 ( 93.71) 12 ( 4.20) 6 ( 2.10)

12 AF025763 286 268 ( 93.71) 13 ( 4.55) 5 ( 1.75)

13 U08443 286 267 ( 93.36) 12 ( 4.20) 7 ( 2.45)

14 AF042106 286 271 ( 94.76) 9 ( 3.15) 6 ( 2.10)

---------------------------------------------------------------------

1001 928 ( 92.71) 44 ( 4.40) 29 ( 2.90)

Overall quartet resolution:

Number of resolved quartets (regions 1+2+3): 928 (= 92.71%)

Number of partly resolved quartets (regions 4+5+6): 44 (= 4.40%)

Number of unresolved quartets (region 7): 29 (= 2.90%)
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Tree-Puzzle also outputs a drawing of the likelihood-mapping triangles in encap-
sulated Postscript format (hivALN.phy.eps) that can be printed or imported in a
graphics application to be edited.

clusters in the Iqpnni ML tree (Fig. 6.8a). However, the quartet puzzling tree

contains a polytomy (see Section 1.7 in Chapter 1) joining Subtypes A, C, G, and

the B/D clade (Fig. 6.8). This is not surprising in light of the noise in the data revealed

by likelihood mapping. Such a lack of resolution may suggest a star-like radiation at

the origin of the HIV-1 Group M subtypes, but it could also imply the presence of

inter-subtype recombination in HIV-1. The latter speculation from the first edition

of this book (Strimmer & von Haeseler, 2003) was recently substantiated by the

findings of (Abecasis et al., 2007) that subtype G might be a recombinant instead

of a pure subtype as previously thought.

Such issues are analyzed further in Chapters 15, 16, and 21, which discuss

general methods for detecting and investigating recombination and conflicting

phylogenetic signals in molecular data.


