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chapter two

The commonness, and rarity,
of species'

Inno environment, whether tropical or temperate, terrestrial or aquatic,
are all species equally common. Instead, it is universally the case that
some are very abundant, others only moderately common, and the
remainder —often the majority —rare. This pattern is repeated across
taxonomic groups (Figure 2.1). Indeed, the adoption, by early phytogeog-
raphers such as Tansley, of characteristic species to classify plant associ-
ations (Harper 1982}, implicitly recognizes that certain members of an
assemblage, by virtue of their abundance, help define its identity.

Many people, as Chapter 1 observed, treat biological diversity, or bio-
diversity, as synonymous with species richness. However, the fact that
species abundances differ means that the additional dimension of even-
ness can be used to help define and discriminate ecological communities
(Figure 2.2). Evenness? is simply a measure of how similar species are in
their abundances. Thus, an assemblage in which most species are equal-
ly abundant is one that has high evenness. The obverse of evenness is
dominance, which, as the name implies, is the extent to which one or a
few species dominate the community. It is conventional to equate high
diversity with high evenness (equivalent to low dominance) and a vari-
ety of measures have been devised to encapsulate these concepts (see
Chapter 4 for details).

The observation that species vary in abundance also prompted the de-
velopment of species abundance models. Motomura’s (1932) geometric

1 After Preston (1948).

2 Lloyd and Ghelardi {1964} introduced the term “equitability” to mean the degree to which the rela-
tive abundance distribution approaches the broken stick distribution. It is not a synonym for evenness.
Cotgreave and Harvey (1994) point out that the usual meaning of equitability is “resonableness.”
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Figure 2.1 Variation in the relative abundance of species in three natural assemblages.
[a) Relative abundance of larger mammals in 11 counties of southwestern Georgia and
northwestern Florida {from table 1, McKeever 1959). A total of 2,688 individuals were
collected during 31,145 trap nights. (b] Relative abundance (number of individuals) of
leeches collected from 87 lotic habitats in Colorado (from table 1, Herrmann 1970). {c)
Relative abundance of trees and shrubs found between 1,680 and 1,920 m in the central
Siskiyou Mountains in Oregon and California. Abundance represents the number of
stems (>1 cm diameter) in 5 ha. {Data from table 12, Whittaker 1960.)

series and Fisher’s (Fisher et al. 1943} logarithmic series represented the
first attempts to mathematically describe the relationship between the
number of species and the number of individuals in those species. Since
then a variety of distributions have been devised or borrowed from other
sources. Some of these models (discussed in detail below) are more suc-
cessful than others at describing species abundance distributions, but
none are universally applicable to all ecological assemblages. This is
because both species richness, and the degree of inequality in species
abundances, vary amongst assemblages. In some cases one or two species
dominate, with the remainder being infrequent or rare. In other situa-
tions species abundances are rather more equal, though never totally
uniform. A further complication arises from the fact that sampling may
provide an incomplete picture of the underlying species abundance dis-
tribution in the assemblage under investigation (see discussion below
and in Chapter 4). Yet, even with these constraints, species abundance
distributions have the power to shed light on the processes that deter-
mine the biological diversity of an assemblage. This stems from the
assumption that the abundance of a species, to some extent at least,
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Figure 2.2 A survey of fish diversity in Trinidad revealed two assemblages with equal
species richness but different evenness. (a) The abundance of the eight species of fish in
the Innis River and Cat’s Hill River in Trinidad is shown using a linear scale. {b) The same
data are expressed as relative abundance and presented in the form of a rank/abundance
plot. Note the logarithmic scale. The greater evenness of the Cat’s Hill River assemblage
is evident from the shallower slope in the rank/abundance plot. In this assemblage the
most dominant species (Astyanax bimaculatus) comprised 28 % of the total catch. This
contrasts with the less even Innis River in which the most dominant species
|{Hypostomus robinii) represented 76 % of the sample. (Data from study described by
Phillip 1998.)

reflectsits success at competing for limited resources (Figure 2.3). No as-
semblage hasinfinite resources. Rather, there are always one or more fac-
tors that set the upper limit to the number of individuals, and ultimately
species, that can be supported. Classic examples of limited resources are
the light reaching the floor of a tropical rain forest (Bazzaz & Pickett
1980), nutrients in the soil (Grime 1973, 1979), and the space available
for sessile organisms on rocky shores (Connell 1961). (The relationship
between productivity and patterns of abundance can be complex—
a point well articulated elsewhere (Huston 1994; Rosenzweig 1995;
Gaston & Blackburn 2000; Godfray & Lawton 2001).) In one of the most
comprehensive reviews of the subject to date, Tokeshi (1993) strongly
advocates the study of species abundance relationships. He argues that
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Figure 2.3 Therelationship between niche apportionment and relative abundance. (a)
Niche space (represented as a pie diagram) being successively carved up by five species
each of which takes 0.6 of the remaining resources. Thus, species | pre-empts 0.6 of all
resources, species 2 takes 0.6 of what isleft (i.e., 0.6 of the remaining 0.4 which equals
0.24)and so on until all have been accommodated. (b An illustration of the assumption
that this niche apportionment is reflected in the relative abundances of the five species.
This outcome is consistent with the geometric series when k=0.6.

if biodiversity is accepted as something worth studying {Chapter 1}, it
follows that species abundance patterns deserve equal and possibly even
greater attention. The goal of this chapter is to review the models pro-
posed to account for the distribution of species abundances in ecological
assemblages. It provides guidelines on the presentation and analysis of
species abundance data and concludes by discussing the concept of rar-
ity in the context of species abundance distributions. Some (though not
all) of the methods assume that abundance comes in discrete units called
individuals. In other cases abundance is assumed to be continuous (bio-
mass is an example). I touch on these matters as they arise and explore
the issue of different types of abundance measure further in Chapter 5.

Methods of plotting species abundance data

Comparative studies of diversity are often impeded by the variety of
methods used to display species abundance data. Different investigators
have visualized the species abundance distribution in different ways.
One of the best known and most informative methods is the rank/abun-
dance plot or dominance/diversity curve (Figure 2.4). In this species are
plotted in sequence from most to least abundant along the horizontal (or
x) axis. Their abundances are typically displayed in alog,, format (on the
y axis)—so that species whose abundances span several orders of magni-
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Figure 2.4 An example of a rank/abundance or Whittaker plot. The y axis shows the
relative abundance of species {plotted using a log,, scale) while the x axis ranks each
species in order from most to least abundant. The three lines show the densities of trees,
inrelation to elevation, on quartz diorite in the central Siskiyou Mountains in California
and Oregon. Species richness decreases, and assemblages become less even (as indicated
by increasingly steeper slopes) at higher altitudes. (Data from table 12, Whittaker 1960.)

tude can be easily accommodated on the same graph. In addition, and in
order to facilitate comparison between different data sets or assem-
blages, proportional or percentage abundances are often used. This sim-
ply means that the abundance of all species together is designated as 1.0
or 100% and that the relative abundance of the each species is given as a
proportion or percentage of the total. Krebs (1999) recommends that
these plots be termed Whittaker plots in celebration of their inventor
(Whittaker 1965).

One advantage of arank/abundance plot is that contrasting patterns of
speciesrichness are clearly displayed. Anotheristhat when there are rel-
atively few species all the information concerning their relative abun-
dances is clearly visible, whereas it would be inefficiently displayed in a
histogram format (Wilson 1991). Furthermore, rank/abundance plots
highlight differences in evenness amongst assemblages (Nee et al. 1992,
Tokeshi 1993; Smith & Wilson 1996} (Figure 2.5). However, if S (the num-
ber of species)is moderately large the logarithmic transformation of pro-
portional abundances can have the effect of de-emphasizing differences
in evenness. Rank/abundance plots are aparticularly effective method of
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Figure 2.5 (a) Rank/abundance plots illustrating the typical shape of three well-known
species abundance models: geometric series, log normal, and broken stick. (b) Empirical
rank/abundance plots (after Whittaker 1970). The three assemblages are nesting birdsina
deciduous forest, West Virginia, vascular plants in a deciduous cove forest in the Great
Smoky Mountains, Tennessee, and vascular plant species from subalpine fir forest, also in
the Great Smoky Mountains. Comparison with (a) suggests that the best descriptors of
these three assemblages are the broken stick, log normal, and geometric series,
respectively —but see text for further discussion of this point. (Redrawn with kind
permission of Kluwer Academic Publishers from fig. 2.4, Magurran 1988.)

illustrating changes through succession or following an environmental
impact. Indeed, it is often recommended (see, for example, Krebs 1999)
that the first thing an investigator should do with species abundance
data is to plot them as a rank/abundance graph.

The shape of the rank/abundance plot is often used to infer which
species abundance model best describes the data. Steep plots signify
assemblages with high dominance, such as might be found in a geomet-
ric or log series distribution, while shallower slopes imply the higher
evenness consistent with alog normal or even a broken stick model (Fig-
ure 2.5; see also below for further discussion of species abundance mod-
els). However, as Wilson (1991) notes, the curves of the different models
have rarely been formally fitted to empirical data. Even Whittaker’s
(1970) well-known and widely reproduced log normal curve may have
been fitted by eye (Wilson 1991). Wilson (1991} provides methods for fit-
ting this and other models to rank/abundance (dominance/diversity)
curves. These are discussed in the section (p. 43) on goodness of fit tests
below.
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Figure 2.6 k-dominance plots for breeding birds at “Neotoma” (table II, Preston 1960).
Censuses from 1923 and 1940 are compared. The latter plot is the more elevated,
indicating that this assemblage is less diverse.

There are further ways of presenting species abundance data in a
ranked format. For instance, the k-dominance plot {Lambshead et al.
1983; Platt et al. 1984) shows percentage cumulative abundance {y axis)
in relation to species rank or log species rank (x axis) (Figure 2.6). Under
this plotting method more elevated curves represent the less diverse as-
semblages. Abundance/biomass comparison or ABC curves (Figure 2.7),
introduced by Warwick (1986), are a variant of the method. Here k-
dominance plots are constructed separately using two measures of abun-
dance: the number of individuals and biomass. The relationship between
the resulting curves is then used to make inferences about the level of
disturbance, pollution-induced or otherwise, affecting the assemblage
(see Figure 5.8). The method was developed for benthic macrofauna and
continues to be a useful technique in this context (see, for example,
Kaiser et al. 2000), though it has been relatively little explored in others.
ABC curves are revisited in Chapter 5 where their application in the
measurement of ecological diversity will be considered. The Q statistic
(Kempton & Taylor 1978; see also Chapter 4 and Figure 4.2) plots the
cumulative number of species (y axis) against log abundance (x axis).
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Figure 2.7 ABC curves showing expected k-dominance curves comparing biomass and
number of individuals or abundance in (a} “unpolluted,” (b) “moderately polluted,” and (c)
“grossly polluted” conditions. Species are ranked from most to least important (in terms
of either number of individuals or biomass) along the {logged) x axis. They y axis displays
the cumulative abundance (as a percentage) of these species. In undisturbed assemblages
one or two species are dominant in terms of biomass. This has the effect of elevating the
biomass curve relative to the abundance (individuals) curve. In contrast, highly disturbed
assemblages are expected to have a few species with very large numbers of individuals,
but because these species are small bodied they do not dominate the biomass. In such
circumstances the abundance curve lies above the biomass curve. Intermediate
conditions are characterized by curves that overlap and may cross several times. See
Warwick (1986) for details, and Figure 5.8 which compares ABC curves for disturbed and
undisturbed fish assemblages in Trinidad. (Redrawn with permission from Clarke &
Warwick 2001a.)

Investigators of the broken stick model (for example, King 1964) often
show relative abundance of species, in a linear scale, on the y axis and
logged species sequences, in order from most abundant to least abun-
dant, on the x axis. In this format a broken stick distribution is manifest-
ed as a straight line.

Other plotting methods are also popular. Advocates of the log series
model, for example, have conventionally favored a frequency distribu-
tion in which the number of species (y axis) is displayed inrelation to the
number of individuals per species {Figure 2.8). A variant of this plot is
typically employed when the lognormal is chosen. Here the abundance
classes on the x axis are presented on a log scale (Figure 2.9). This type of
graph is sometimes dubbed a “Preston plot” (Hubbell 2001) in recogni-
tion of Preston’s (1948) pioneering use of the log normal model. Fach
plotting method emphasizes a different characteristic of the species
abundance data. In the conventional log series plot the eye is drawn to
the many rare species and to the fact that the mode of the graph falls
in the lowest abundance class (represented by a single individual). In
contrast, the log transformation of the x axis often has the effect of
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Figure 2.8 Frequency of species in relation to abundance. These graphs show the
relationship between the number of species and the number of individuals in two
assemblages: (a) freshwater algae in small ponds in northeastern Spain and (b) beetles
found in the River Thames, UK. In both cases the mode falls in the smallest class
{represented by a single individual). These graphs may be referred to as “Fisher” plots
following R. A. Fisher’s pioneering use of the log series model. (Redrawn with kind
permission of Kluwer Academic Publishers from fig. 2.3, Magurran 1988; based on data
from Williams 1964.)

shifting the mode to the right, thereby revealing a log normal pattern of
species abundance.

In 1975 May argued that plottingmethods needed to be standardized to

facilitate the comparison of different data sets. In 1988 I concluded that
there had been little progress towards that goal (Magurran 1988). None
the less since that time the rank/abundance plot has gained in
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Figure 2.9 Frequency of species in relation to abundance. A “normal” bell-shaped curve of
species frequencies may be achieved by logging species abundances. Three log bases (2, 3,
and 10} have been used for this purpose. The choice of base is largely a matter of scale — it is
clearly inappropriate to use log,, if the abundance of the most abundant species is <102 or
to adopt log, if it is >10°. Less obviously, the selection of one base in preference to another
can determine whether a mode is present. This is a crucial consideration since the
presence of a mode is often used to infer “log normality” in a distribution. {The position of
the class boundaries can also affect the likelihood of detecting a mode, see text for further
details.) The figure illustrates three assemblages, each plotted using a different log base.

{a) Log,: diversity of ground vegetation in a deciduous woodland at Banagher, Northern
Ireland. This usage follows Preston {1948). Species abundances are expressed in terms

of doublings of the number of individuals. For example, successive classes could be <2
individuals, 34 individuals, 5-8 individuals, 9-16 individuals, and so on. Itis
conventional to refer to these classes as octaves. {b) Log,: snakes in Panama. In this
example the upper bounds of the classes are 1, 4, 13, 40, 121, 364, and 1,093 individuals. (c)
Log,;: British birds. Classes in log, , represent increases in order of magnitude: 1, 10, 100,
1,000, and so on. In all cases the y axis shows the number of species per class. These graphs
may be referred to as ”Preston” plots. (Data in (b} and (c} from Williams 1964; redrawn
with kind permission of Kluwer Academic Publishers from fig. 2.7, Magurran 1988.)

popularity (Krebs 1999). Perhaps standardization of methods is at last on
the horizon.

Species abundance models

It is not simply plotting methods that have proliferated. A diverse range
of models has also been developed to describe species abundance data. In
essence there are two types. On one hand are the so-called statistical
models, such as the log series (Fisher et al. 1943), that were initially de-
vised as an empirical fit to observed data. The advantage of this type of
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model is that it enables the investigator to objectively compare different
assemblages. In some cases a parameter of the distribution, such as o in
the case of the log series, can be used as an index of diversity. Alterna-
tively, the goal may be to explain, rather than merely describe, the rela-
tive abundances of species in an assemblage. To do this itis necessary to
predict how available niche space might be divided amongst the con-
stituent species and then ask whether the observed species abundances
match this expectation. Of course, there are many different ways in
which resources might be subdivided amongst species and these biologi-
cal or theoretical models represent different scenarios of niche appor-
tionment. For example, Tokeshi’s {1990, 1993) dominance pre-emption
model envisages a situation where the niche space of the least abundant
species in an assemblage is invariably invaded by a colonizing species.
This contrasts with his dominance decay model in which the niche of
the most dominant (that is the most abundant) species is targeted. The
dominance pre-emption process generates a very uneven community in
which the status of the most abundant species is preserved while the
least abundant species lose resources and become progressively rarer
over time. In contrast, Tokeshi’s dominance decay model produces a
community more even than the well-known broken stick model: These
models are discussed in more detail below (see p. 50).

Although itis convenient to classify species abundance models as sta-
tistical or biological, in reality the distinction can be blurred (Table 2.1).
Several of the statistical models, notably the log series and log normal
(see below and p. 32), have acquired biological explanations since their
original formulation. It is also important to remember that the fact that
a natural community displays a species abundance relationship in line
with the one predicted by a specific model does not in itself vindicate the
assumptions on which the model is based. The conclusion that must be
drawn in such casesis simply that the model cannot be rejected and that
additional investigation, possibly including experimental manipula-
tion, will be necessary for a fuller understanding of niche apportion-
ment. Sampling may mask the true form of the species abundance
distribution (Chapter 5). A further complication is that more than one
biological or statistical model may describe the assemblage in question.
This pointis considered in detail on p. 43.

Statistical models

Log series

Fisher’s logarithmic series model (Fisher et al. 1943) represented one of
the first attempts to describe mathematically the relationship between
the number of species and the number of individuals in those species.

o —————
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Table 2.1 The classification of species abundance models [after Tokeshi 1993, [999).
Type of model Model Reference
Statistical Log series Fisher etal. 1934
Log normal Preston 1948
Negative binomial Anscombe 1950
Bliss & Fisher 1953
Zipf—Mandelbrot Zipf 1949

Mandelbrot 1977
Mandelbrot 1982

Biological
Niche based Motomura 1932

MacArthur 1957

MacArthur 1957

MacArthur 1957

Geometric series
Particulate niche
Overlapping niche
Broken stick

MacArthur fraction Tokeshi 1990
Dominance pre-emption Tokeshi 1990
Random fraction Tokeshi 1990

Sugihara 1980
Tokeshi 1990
Tokeshi 1990
Tokeshi 1990
Tokeshi 1996
Hughes 1984, 1986

Caswell 1976
Hubbell 2001

Sugihara’s sequential breakage
Dominance decay

Random assortment
Composite

Power fraction

Non-niche based Dynamic model

Other Neutral model
Neutral model

Although originally used as a convenient fit to empirical data, its wide
application, especially in entomological research, has led to a thorough
examination of its properties (Taylor 1978), as well as speculation about
its biological meaning [see below). The log series model is straight-
forward to fit (Worked example 1). One of its parameters, ¢, has proved
an informative and robust diversity measure (Chapter 4).

The log series takes the form:

ox? ox? ox

ox, —, .
2 3 n

with ox being the number of species predicted to have one individual,
0x2/2 those with two, and so on (Fisher et al. 1943; Poole 1974). Since 0 <
x<1,and both o and x are constants (for the purposes of fitting the model
toaspecified data set}, the expected number of species will be greatest in
the smallest abundance class (of one individual) and decline thereafter. It
should also be noted that the log series distribution, in contrast to many
other models, expects that species abundance data will come in the form
of numbers of individuals. The log series is therefore inappropriate if
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Figure 2.10 Values of x inrelation to N/S. See text for details.
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biomass or some other noninteger measures of abundance is used.
Hayek and Buzas (1997) explain how to fit the model using occurrence
(frequency) data.

xis estimated from the iterative solution of:

S/N ={(1-x)/x]-[-In(l - x)]

where N is the total number of individuals.

In practice x is almost always >0.9 and never >1.0. If the ratio N/S >20
then x>0.99 (Poole 1974). Krebs (1999, p. 426) lists values of x for various
values of N/S. This relationship is illustrated in Figure 2.10.

Two parameters, o, the log series index, and N, summarize the distrib-
ution completely, and are related by:

S=aln(l+ N/o)

where  is an index of diversity. Indeed, since x often approximates to 1,
o represents the number of extremely rare species, where only a single
individual is expected.

o has been widely used, and remains popular (Taylor 1978) despite the
vagaries of index fashion. It is also a robust measure, as well as one that
can be used even when the data do not conform to a log series distribu-
tion (see Chapter 4 for a discussion of o as a diversity measure).

The index may be obtained from the equation:

N(1-x)

o=

¥ —— e e

.
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with confidence limits set by:

0.6931470

[In(x/(1-x) - 1]’

as proposed by Anscombe (1950). Note that 0.693147 =1n2. Both Hayek
and Buzas (1997) and Krebs (1999] provide more details. Hayek and Buzas
(1997) advise that this formula should not be used when N/S < 1.44 or
when x £ 0.50. However, as such values are atypical, this restriction is
unlikely to be burdensome. ,

Asvalues of a are normally distributed, attaching confidence limits to
an estimate of o is simple (Hayek & Buzas 1997). The first step is to ob-
tain the standard error of o by taking the square root of the variance.
(Hayek and Buzas {1997) remind us that because we are dealing with the
sampling variance of a population value, taking the square root of the
variance produces the standard error rather than the standard deviation.)
This standard error can then be multiplied by 1.96 to yield 95% confi-
dence limits.

Alternatively, o can be deduced from values of S and N using the
nomograph provided by Southwood and Henderson (2000}, following
Williams (1964).

To fit the log series model itself one simply calculates the number of
species expected in each abundance class and, using a goodness of fit test
(see p. 43), compares this with the number of species actually observed
(see Worked example 1).

It should also be noted that the log series can arise as a sampling distrib-
ution. This will occur if sampling has been insufficient to fully unveil an
underlying lognormal distribution (see Figure 2..14 for more explanation).

Although the log series was initially proposed as a statistical model,
thatis one makingno assumptions about the manner in which speciesin
an assemblage share resources, its wide application prompted biologists
to consider the ecological processes that might underpin it. These are
most easily reviewed in relation to the geometric series (discussed below
in the context of niche apportionment models), to which the log series is
closely related (May 1975). A geometric series distribution of species
abundances is predicted to occur when species arrive at an unsaturated
habitat at regular intervals of time, and occupy fractions of remaining
niche space. A log series pattern, by contrast, will result if the intervals
between the arrival of these species are random rather than regular
(Boswell & Patil 1971; May 1975). The log series produces a slightly more
even distribution of species abundances than the geometric series,
though one less even than the log normal distribution (see below). The
small number of abundant species and the large proportion of “rare”

var(o) =
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species predicted by the log series imply that, as is the case with the geo-
metric series, it will be most applicable in situations where one or a few
factors dominate the ecology of an assemblage. For instance, [ found that
the species abundances of ground flora in an Irish conifer woodland,
where light is limited, followed a log series distribution {(Magurran 1988)
{Figure 2.11). In can be hard to distinguish between these models in
terms of their fit to empirical data. Thomas and Shattock (1986), for ex-
ample, showed that both the geometric series and the log series models
adequately described the species abundance patterns of filamentous
fungi on the grass Lolium perenne.

Log normal

Distribution

The log normal distribution was first applied to abundance data by Pre-
stonin 1948 in his classic paper on the commonness andrarity of species.
Preston plotted species abundances using log, and termed the resulting
classes “octaves.” These octaves represent doublings in species abun-
dance (see, for example, Figure 2.9). It is not, however, necessary to use
log,; any log base is valid and log; and log, , are two common alternatives
(Figure 2.9). May (1975) provides a thorough and lucid discussion of the
model.
The distribution is traditionally written in the form:

S(R) = S, exp(-a’R?)

where S(R) = the number of species in the Rth octave (i.e., class) to the
right, and to the left, of the symmetric curve; S;=the number of species in
the modal octave; and a=(20%)"}/2=the inverse width of the distribution.

Empirical studies show that a is usually =0.2 (Whittaker 1972, May
1975). A further parameter of the lognormal, y, emerges when a curve of
the number of individuals in each octave, the so-called individuals
curve, is superimposed on the species curve of the log normal (Figure
2.12).Ttis defined as:

Y= RN/Rmax =In 2/[2(1 (In SO)I/Z]

where R, = the modal octave of the individuals curve; and R_,_=the
octave in the species curve containing the most abundant species
(May 1975).

In many cases the crest (or mode) of the individuals curve (Ry) coin-
cides with the upper tail of the species curve (R__ ) to give y= 1. [This
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Figure 2.11 Rank/abundance plot of ground vegetation in an Irish conifer plantation. The
slope of the graph is indicative of a log series distribution. The inset shows the cumulative
observed {solid line] and expected (dotted line) number of species in relation to abundance
class {in octaves) for the same data set. The congruence between the observed and
expected distributions confirms that the data do indeed follow a log series (D =0.06,
P>0.05, Kolmogorov-Smirnow test; see Worked example 1).
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Figure 2.12 Features of the log normal distribution. The striped curve [species curve)
shows the distribution of species amongst classes. If these classes are in log, - thatis

doublings in numbers of individuals - they are referred to as octaves [sce Figure 2.9). Since
the distribution is symmetric, classes in the same position on either side of the mode are
expected to have equal numbers of species. For this reason itis conventional to term the
modal class 0 and to refer to classes to the right of the mode as 1, 2, 3, etc. and those on

its left hand side as =1, -2, =3, etc. R, marks the position of the least ahundant species
while R, shows the expected position of the most abundant species. (R, =~R_;,.) The
number of species in each class is S|R). In this example the number of species in the modal
class (Sy) would be 18. The species curve can be superimposed by the individuals curve
[hatched) representing the number of individuals present in each class. The class with the
most individuals (in other words the one in which the mode of the individuals curve
occurs) is termed Ry. A log normal distribution is described as canonical when Ry and
R, coincide to give the value y=1 (wherey= Ry/R nay)- [Redrawn with kind permission
of Kluwer Academic Publishers from fig. 2.12, Magurran 1988; after May 1975.)

simply means that there are more individuals in class R ,, than in any
other class; it is an empirical rule that holds true for many different data
sets.) In such log normals, described by Preston {1962) as “canonical”
(Preston’s canonical hypothesis), the standard deviation is constrained
between narrow limits [resulting in a ~0.2). In other words, the standard
deviation (s.d.) of species abundances in reasonably large assemblages
(S > 100), when these abundances are expressed in a log, scale, is around
4. Nee et al. (1992, 1993) show why this makes biological sense. They
note that, given a log normal distribution, 99% of species would be ex-
pected to occur within +3 s.d. of the mean. Thus, should the standard de-
viation be 4, the range of abundances will be 224. This can be illustrated
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asfollows. The 6 s.d. needed to encompass 99% of species are multiplied
by the value of the standard deviation (4) to give 24, and because a log,
scaleis being used to measure abundance, the range of these abundances
is 2%*. Since the abundance of the least abundant species is 1, the most
abundant will have 16,777,216 individuals. This number is plausible for
many taxa. On the other hand, larger standard deviations generate upper
limits of abundance that are unlikely to be met. If, for example, the stan-
dard deviationis 7.5, the most abundant species would have 3.5+ 104 in-
dividuals, an improbable tally for most vertebrates at least. If high levels
of abundance can genuinely be achieved, as seems to be the case for taxa
such as diatoms (Hutchinson 1967; Nee et al. 1992}, and the standard de-
viation remains around 4 (Sugihara 1980}, the implication is that the
abundance of the least abundant species is also considerable. It is rela-
tively easy to explain why the standard deviation will rarely be much
greater than 4, but what prevents it from being considerably less? Why
are the most abundant species not just twice, or even 10 times as abun-
dant as the rarer ones? Nee et al.’s (1992) answer is that basic differences
in biology between species, including niche requirements and trophic
level, inevitably generate substantial differences in abundance.

Statistical and biological explanations for the log normal

The majority of large assemblages studied by ecologists appear to follow
a log normal pattern of species abundance (May 1975; Sugihara 1980;
Gaston & Blackburn 2000; Longino et al. 2002} and many of these log
normal distributions can be described as canonical. Such pervasive pat-
terns invariably prompt a search for ecological explanations. May (1975},
however, notes that many other large data sets, such as the distribution
of human populations in the world, as well as of wealth within countries
such as the USA, are log normal in character. He attributes the near
ubiquity of the log normal, and the prevalence of its canonical form, to
the mathematical properties of large data sets. May (1975) points out that
the log normal is a consequence of the central limit theorem, which
states that when alarge number of factors act to determine the amount of
a variable, random variation in those factors will result in the variable
being normally distributed. This effect becomes more pronounced as
the number of determining factors increases. In the case of log normal
distributions of species abundance data, the variable is the number of
individuals per species (standardized by a log transformation) and the de-
termining factors are all the processes that govern community ecology
(but see also Pielou 1975; Gaston & Blackburn 2000). Speciose assem-
blages (with S > 200) are particularly likely to be canonical (Ugland &
Gray 1982). Ugland and Gray (1982) have also argued that ecological
processes need not be invoked to explain the canonical lognormal.
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Others have none the less advocated a stronger biological underpin-
ning. Sugihara (1980) argued that many natural assemblages, including
those of birds, moths, gastropods, plants, and diatoms, fit the canonical
hypothesis too well for it to be a statistical artifact. Following Pielou
(1975), Sugihara (1980) developed a model in which niche space is se-
quentially split into S pieces. A split occurs each time a new species in-
vades the assemblage and competes for existing resources. During each
invasion an existing niche is targeted at random. This means that all
niches, irrespective of their size, are equally likely to be selected for divi-
sion (in other niche-based models such as MacArthur’s broken stick and
Tokeshi’s power fraction the probability that a niche will be selected for
splitting is some function of its size; see p. 55). If aniche is broken at ran-
dom the larger of the two fragments will represent between 50% and
100% of its original size. On average, then (after many such divisions),
the larger of the new niches will be 75% of the old one. Sugihara repre-
sented this by assuminga 75% :25% split at each division. The outcome
resembles a canonical log normal distribution.

This approach treats the log normal distribution as one of niche appor-
tionment—that is a biological model —rather than the statistical model
it was initially conceived as. Indeed Tokeshi (1999) notes that Sugihara’s
model can be viewed as a special case of the random fraction model
(described below), albeit with some important distinctions (see Tokeshi
{1996, 1999) for details, and a critique of some of Sugihara’s assump-
tions). Drozd and Novotny’s (2000) PowerNiche program can be used to
calculate expected species abundances.

Unveiling the distribution

In addition to the conceptual difficulty of deciding whether, and to what
extent, the log normal might encapsulate biological processes, investi-
gators face practical problems in fitting it to empirical data. Like its nor-
mal sibling, the log normal distribution is a symmetric, bell-shaped
curve. If, however, the data to which the curve is to be fitted derive from
a sample, the left-hand portion of the curve, representing the rare and
harder to sample species, may be obscured. Preston (1948} termed the
truncation point of the curve the veil line and argued that the smaller the
sample the further this veil line will be from the origin of the curve
{Figure 2.13). In many data sets only the portion of the curve to the right
of the mode is visible. It is only in large data collections, such as those
covering wide biogeographic areas or derived from long periods of inten-
sive sampling, that the full curve is likely to be revealed. Longino et al.’s
(2002} investigation of ant species at La Selva in Costa Rica provides
a good example. Some 1,904 samples were collected using various

methods. When these are plotted to represent successive doublings of -
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Figure 2.13 The veil line. {a) In small samples, only the portion of the distribution to the
right of the mode may be apparent. However, as sample size increases the veil line is
predicted to move to the left revealing first the mode and eventually the entire
distribution. This effect is evident in (b). (b] Fish diversity in the Arabian Gulf. Samples of
fish were collected in an area of the Gulf adjacent to Bahrain. Abundance - the mean
number of individuals caught in 45 min trawling — is shown in log, classes (octaves). In
single samples, for instance one caught in May, only the right hand portion of the log
normal distribution is evident. Once the samples taken throughout May and June are
included the mode becomes apparent. The full lognormal distribution is revealed when
data collected for the entire year are used. A similar effect can be seen in Figure 2.14.
[Redrawn with kind permission of Kluwer Academic Publishers from fig. 2.10. Magu rran
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sampling effort a log normal distribution s progressively unveiled {their
figure 4). Immense samples are no guarantee of an unveiled log normal,
however. Preston (1948 described two long-term data collections in his
original paper. The first of these, a sample of moths collected at Saska-
toon in Canada over 22 years, numbered 277 species and more than
87,000 individuals. Preston used the position of the veil line to predict
that it was only 72% complete. His second example, another collection
of moths, again spanning 22 years and consisting of 291 species and over
300,000 individuals, also had a veil line and was estimated to be 88%
complete. It is sometimes argued that such broadly based collections of
data contain such a multiplicity of assemblages as to render them eco-
logically uninterpretable. Wilson (1991) believes that because plant bio-
mass is so plastic, there is no lower limit to the abundance of a species in
2 community and accordingly that the veil line is inapplicable to plants.
A fully unveiled distribution can be fitted, without complications,
using standard procedures. Partly veiled distributions are more problem-
atic. It is sensible not to attempt to fit a lognormal to a truncated distrib-
ution unless the mode of this distribution is apparent. This seems
obvious advice until one realizes that a mode can be revealed or obscured
depending on which log base is used to construct the abundance classes
(Hughes 1986), or even by the precise manner in which boundaries
between the abundance classes are assigned (as noted by Colwell &
Coddington 1994). Providing the investigator is convinced that it is pru-
dent to proceed, a truncated log normal can be fitted using the approach
outlined by Pielou (1975), following Cohen (1959, 1961). The species
abundances are logged (x = log,,11,) and a normal curve fitted, disregard-
ing the area to the left of the truncation point. The truncation point is as-
sumed tofall at—0.30103 orlog,,0.5, this being the lower boundary of the
class containing species for which only one individual was observed.
Table 1in Cohen (1961) (reproduced in Magurran (1988)and Krebs (1999))
provides 6, the function needed to estimate the mean and variance of the
truncated distribution. Once these values are calculated, the expected
frequencies of species in each abundance class can be obtained and com-
pared with observed frequencies using a goodness of fit test (see p. 43).
Krebs (1999) has written a PC Windows-based computer program?® that
fits a truncated log normal according to Pielou’s (1975) method. How-
ever, it can also be fitted using a spreadsheet (see Worked example 2 for
an example).
The area under the curve provides an estimate of S*, the total number
of species in the assemblage. (These estimates of S* should be treated
" with extreme caution. More cffective methods of estimating species

3 This program, and others relating to the methods described in Krebs (1999}, can be obtained from
www.exetersoftware.com.
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richness are described in the next chapter.) Further discussion of the
truncated log normal is provided by Slocomb et al. (1977).

Strictly speaking, the continuous log normal described here (whether
truncated or not) should only be applied to continuous abundance data,
such as biomass or cover measures, rather than to discrete data, includ-
ing numbers of individuals. In practice, however, most people use the
continuous log normal when abundances have been measured as num-
bers of individuals since, for large sample sizes especially, these data are
effectively continuous.

An alternative method of fitting a log normal distribution to sample
datahasbeen discussed by Bulmer (1974) and Kempton and Taylor (1974)
andisreferred to as either the Poisson log normal or the discrete log nor-
mal. It is assumed that the continuous log normal is represented by a se-
ries of discrete abundance classes which behave as compound Poisson
variates. The Poisson parameter A is distributed log normally. Although
the Poisson log normal presents greater computational difficulties than
thecontinuouslognormal, the greater availability of computer packages

- capable of fitting it mean that, for many, this is not a serious impedi-

ment. The Poisson log normal also provides an estimate of $*, to which,
in contrast with the estimate generated by Pielou’s method, confidence
limits can be attached. Given the omnipresence of the log normal dis-
tribution this estimate of S* appears to offer a promising method of
deducing overall species richness in incompletely sampled assemblages.
Unfortunately, as the next chapter shows, the confidence limits are often
so large that such estimates are meaningless.

One might also expect that 6, the standard deviation, of the lognormal
distribution would be a useful measure of diversity. Although ¢ can
be treated as a measure of evenness it is an ineffective discriminator of
samples, and cannot be estimated accurately when sample size is small
{Kempton & Taylor 1974). These criticisms donot, however, apply to the
ratio S*:o, referred to as L. There is a marked correlation between
the values of A and a calculated for the same data and both are good at
discriminating amongst samples and assemblages (Kempton & Taylor
1974; Taylor 1978). Further details are provided in Chapter 4.

In addition to statistical fits there are, of course, graphic methods for
deciding whether data are log normally distributed. The simplest of
these, already noted, is to examine a graph in which the species frequen-
cyisplotted against log abundance classes. (See, for example, Figures 2.9
and 2.13.) Alternatively, a “probability plot” (Gray 1979, 1981; Gray &
Mirza 1979)—in which abundance (in log, classes) is shown on the x axis
and cumulative frequency of species on the y axis —can be used to detect
the presence of a log normal distribution, as well as departures from it.
Log normal distributions appear as straight lines on such a graph and
the method has been used to assess the effects of pollution on marine
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Figure 2.14 Therelationship between log series and log normal distributions. These three
graphs show: (a) the abundance of moths summed across 225 sites through Britain, (b)a
typical annual sample from a single rural site, and (c) a sample from an impoverished
urban site. The dashed lines represent log normal distributions fitted to the data. Log
series distributions are indicated by continuous lines. These graphs demonstrate how
small samples (in which the full log normal distribution is apparently veiled) are
described equally well by both the log series and {truncated) log normal. When the
complete log normal distribution is revealed the log series ceases to be a good fit.
(Redrawn with permission from Taylor 1978.)

benthic communities (Gray 1979). Since large natural assemblages are
typically log normal in character any departures from a log normal dis-
tribution ought to be indicative of disturbance. However, Tokeshi {1993)
has criticized the method as being insensitive to changes in species rich-
ness, and rather poor at discriminating species abundance distributions.
Indeed, he notes that a geometric series distribution, the pattern typical-
ly associated with a polluted or perturbed assemblage, also appears as a
straight line of this type of graph.

Overlapping distributions

Many data sets are described equally well by both the log series and [trun-
cated) log normal making it impossible to decide which model is more
appropriate. Figure 2.14 illustrates why the log series is sometimes
regarded as a sampling distribution, which could, with greater effort, be
extended to reveal the underlying (unveiled) log normal. Since the log
normal describes more data sets than the log series, and may encapsulate
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the many processes at work in ecology, it is arguably the most suitable
vehicle for comparing assemblages (May 1975). On the other hand,
Kempton and Taylor (1978) and Taylor (1978) favor the log series distrib-
ution because it accentuates the “median range” of commonness. This
property helps insure that a is a robust diversity index (see also Chapter
4},

The contention that the log normal is the default distribution for large
and unperturbed communities has not gone unchallenged. Lambshead
and Platt (1985) argue that many classic data sets are not true samples,
but rather collections or amalgamations of nonreplicate samples. Fur-
thermore, they assert that the shape of the log normal distribution is in-
dependent of sample size, and conclude that “the lognormal . . . isnever
found in genuine ecological samples” and advocate the adoption of the
log series model instead. Tokeshi {1999) also questions the generality of
the log normal. Following Nee et al. (1991), he notes that many species-
rich assemblages are characterized by a high proportion of rare species.
These produce plots that are skewed to the left (Hubbell & Foster 1986;
Gaston & Blackburn 2000; see also Figure 2.9). Tokeshi postulates that
such truncated distributions are in fact true representations of the un-
derlying pattern of species abundance in diverse assemblages and that a
symmetric log normal pattern will never emerge, irrespective of the in-
tensity with which the assemblage is sampled. Indeed, Tokeshi (1999)
suggests that in future it may be necessary to turn to niche apportion-
ment models in order to explain abundance patterns in these and other
communities. Gaston and Blackburn (2000) also assert that large-scale
assemblages, including those that have been thoroughly surveyed (such
as British birds), are often log left-skewed. They note that Tokeshi’s
(1996) power fraction model and Hubbell’s (2001) neutral theory (both
discussed in more detail later in this chapter), along with Harte et al.’s
(Harte & Kinzig 1997; Harte et al. 1999a) self-similarity model, produce
distributions with more rare species than the log normal would predict.
Sugihara’s (1980) model also generates a log left-skewed distribution
(Nee et al. 1991).

Peter Henderson and I (Magurran & Henderson 2003) offer a different
solution to this problem. We note that communities can be dissected
into two components: permanent members versus occasional species.
This partition requires either a long-term data series or good biological
knowledge of the species themselves. The distribution of permanent
species typically resembles a log normal whereas occasional species tend
to follow a log series distribution of species abundance (Figure 2.15). The
prominence of this log series distribution reflects the importance of
the migratory or infrequent component of the assemblage. Interestingly,
the assumptions that Fisheret al. {1943) made when they first applied the
log series distribution to species abundance data anticipate this out-
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Figure 2.15 The pattern of abundance and persistence in a estuarine fish assemblage
(Bristol Channel, UK). The data are for a 21-year time series of mopthly samplés. {a)

The number of years in which each fish was observed, plotted aga%nst the maximum
abundance in any one year. A discontinuity lindicated by the vertical arrow) allows the
resident and migrant species to be defined as those present in >10 years 'and <10 years. (b)
The abundance distribution for all species. (c) The abundance distribution of the re§1dent
species. The frequency of each abundance class predicted by the log normal n}odel is
shown as adot x*,, = 0.88, P=0.99).(d) The abundance of the (1CC.i.510nal species; the
frequency of each abundance class predicted by alog series modelis shownbya do;3

(leél =424, P=0.39). (Redrawn with permission from Magurran & Henderson 2003.)

come. When these distributions are superimposed, alog left-skewed (113-
tribution is the result. Like Hubbell {2001) —but through a different llpe
of reasoning—we conclude that level of migration is the key to explain-
ing the characteristic left skew of log-transformed species abundance

distributions.

Other statistical models

The negative binomial model has many applications in ecology.(Sou.th-
wood & Henderson 2000), including species richness estimation
(Coddington et al. 1991) but, as Pielou (1975) remarke.d, it is'only rarely
fitted to species abundance data {one exception being BnanA (1953)).
Given the plethora of competing mo dels this alone seems sufﬁqent rea-
son not to revive it. Yet, the negative binomial is of potential interest
since it comes from the same stable of models as the log series. (The log
series is in fact a limiting form of the negative binomial.) Pielou (}975)
provides more details, including a method of fitting the negative biono-
mial to observed data.

The Zipf-Mandelbrot model (Zipf 1949, 1965; Mandglbrot 1977, 1982;
Gray 1987), on the other hand, has attracted more mtgrest. L11_<e the
Shannon diversity index (Chapter 4), this approach has its roots in lin-

The commonness, and rarity, of species 43

guistics and information theory. It has been interpreted as reflecting a
successional process in which later colonists have more specific require-
ments and hence are rarer than the first species to arrive (Frontier 1985},
The model postulates a rigid sequence of colonists, with the same
species always present at the same point in the succession in similar
habitats. This prediction is patently not followed in the real world and
Tokeshi (1993) considers the model no more biological than the log nor-
mal or log series. None the less, the model has been successfully applied
in a number of studies (Reichelt & Bradbury 1984; Frontier 1985; Gray
1987; Barange & Campos 1991}, and continues to have application in
both terrestrial (Watkins & Wilson 1994; Wilson et al. 1996; Mouillot &
Lepetre 2000) and aquatic (Juhos & Voros 1998) systems. It has also been
used to test the performance of various diversity estimators (Mouillot &
Lepetre 1999).

Goodness of fit tests

The conventional method of fitting a deterministic model is to assign
the observed data to abundance classes. Classes based on log, are often
used. These represent doublings of abundance—2, 4, 8, 16, 32, etc., indi-
viduals —are intuitively meaningful, and typically produce a manage-
able number of classes. If abundance data are in the form of numbers of
individuals, adding 0.5 to the class boundaries means that species can be
allocated to abundance classes without ambiguity. The number of
species expected in each abundance class is calculated according to the
model used. (The model takes the observed values of S (number of
species) and N (total abundance) and then determines how these N indi-
viduals should be distributed amongst the S species.) A goodness of fit
test, often x? but sometimes G (Sokal & Rohlf 1995}, is used to evaluate
the relationship between the observed and expected frequencies of
speciesin each abundance class. If P<0.05 the model can be rejected, that
is it not does adequately describe the pattern of species abundances. If P
>0.05, orideally P>>0.05, then a fit can be assumed.

There are drawbacks associated with using goodness of fit tests in this
way. Tests of empirical data typically involve a small number of abun-
dance classes, perhaps 10 or fewer. This restricts the degrees of freedom
(d.f.) available. These must then be reduced (by 1 in the case of the geo-
metric series and log series and by 3 for the truncated lognormal) to allow
for the parameters required by the model. The number of classes, and
thus the degrees of freedom, may need to be pruned further if the number
of species expected in a given class is small (<1). Recall that the formula
for y? is {|observed — expected)?/expected] and that this calculation is
summed across the classes. If expected frequencies fall below 1, > will
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return an unrealistically high value. To circumvent this problem the
‘user can sum the expected values in adjacent classes (and their observed
equivalents) and adjust the degrees of freedom as appropriate (see
Magurran (1988) for some examples). The more the degrees of freedom
are eroded, the harder it becomes to reject a model. This difficulty is
compounded by the fact that the differences between the models can lie
in the way they allocate species to two or three abundance classes.

One solution might be to use the whole y? distribution when compar-
ing fits of various models. For example, if goodness of fit tests gave values
of x2=10.5 (with 6 d.f.) for the truncated log normal, and x?>=2.8 (with 8
d.f.)for the logseries, it would be possible to make the statement that the
probability of the expected log normal being different from the observed
data is <90%, while the probability of the log series being different is
<10%. Both values are below the conventional level of 95% but the log
series clearly provides a better description of the data. However, Wilson
(1991) cautions that unless the models can be viewed as subsets of one
another, it would be invalid to conclude that one was a significantly bet-
ter fit. In principle it is possible to use a power test to determine whether
the sample size is sufficient to allow a particular species abundance
model to be rejected, but in practice this approach has been little used.

- Tokeshi (1993) also notes that goodness of fit tests work most effec-
tively with large assemblages (S > 100), but is concerned that such as-
semblages might not be ecologically coherent units. Instead of 2 he
recommends the Kolmogorov-Smirnov goodness of fit (GOF) test (Siegel
1956; Sokal & Rohlf 1995). Like the % test it can be used to assess the
congruence between observed data and a theoretical expectation, and, in
contrast to the x2 test, it may be applied to very small samples. Indeed,
Tokeshi (1993) advocates adopting the Kolmogorov-Smirnov GOF test
[Sokal & Rohlf 1995) as the standard method of assessing the goodness of
fit of deterministic models. (He also suggests the Kolmogorov-Smirnov
two-sample test can be used to compare two data sets directly, indepen-
dently of any attempt to formally describe their abundance patterns—
see Worked example 3 and general recommendations below. ).

Wilson (1991) provides methods for fitting rank/abundance data to
the log normal, geometric series, broken stick, and Zipf~Mandlebrot
models. These involve minimizing the deviance between the observed
and fitted rank/abundance plots. Once again the issue of goodness of fit
arises. Wilson (1991) reinforces the earlier observation (Frontier 1985;
Lambshead & Platt 1985; Hughes 1986; Magurran 1988) that a single
data set will often be equally well described by several models. Further-
more, he notes that if one model fits the data, and another does not, it is
not possible to conclude that the fit of the two is significantly different.
His solution is to use replicated observations, since these increase the
probability that the assemblage has been adequately described. (The
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same advice comes from Tokeshi (1993).) Wilson then recommends that
an objective test would be analysis of variance on the abundance model x
replicate table of deviances, with the model x replicate interaction
providing the error term. The deviances can be log transformed, if neces-
sary, to achieve normality. A multiple comparison test, for example
Duncan’s new multiple range test (see Sokal and Rohlf {1995) for further
examples), can then be used to infer which models are significantly
different from one another.

Biological (or theoretical) models

The search for biologically based models has a venerable tradition. Al-
though Motomura’s (1932) geometric series was initially proposed as a
statistical model, later investigators {see Tokeshi 1993, 1999 for a dis-
cussion)realized that itis a metaphor for the way colonists in an ecolog-
ical community might divide the available niche space between them.
R.H. MacArthur(1957)was the first to explicitly challenge the use of sta-
tistically based models and devised three niche apportionment models.
Two of these, the particulate niche and the overlapping niche, were con-
sidered unsatisfactory by MacArthur himself, but his third model, the
broken stick, has played a significant role in shaping the way ecologists
think about the diversity of ecological communities. The broken stick
model continues to have application today, often as a null hypothesis
against which other patterns of niche division can be tested. That was es-
sentially how things stood until Tokeski (1990, 1993, 1999) took another
look at niche apportionment models and devised a number of new ones,
including some that appear to offer considerable potential.

Biological models are based on the assumption that an ecological com-
munity has a property called niche space that is divided amongst the
species that live there. Although niche space is most easily visualized
in one or two dimensions, niches, as Hutchinson (1957) recognized, are
multidimensional. This need not, in itself, present a difficulty since
multidimensional space can be simplified to one dimension for the pur-
poses of modeling. Nor is it a problem that the components of niche
space (temperature, pH, food availability, etc.) will vary from one com-
munity to another. However, as Tokeshi (1993) notes, the distinction
between the fundamental and the realized niche (sensu Hutchinson) is
rarely made in investigations of biological diversity. Indeed, as he ob-
serves, most niche apportionment models are framed in terms of the fun-
damental niche even though the relative abundances of species will be
much more dependent on the magnitude of the realized niche. Since the
relative abundance of species, usually measured as either number of in-
dividuals or biomass (see p. 138}, isused as a surrogate of niche size when
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testing the models, a potential difficulty arises. None the less, Tokeshi

suggests that this problem will not be too serious if the models are

viewed as pertaining to realized niches, or a combination of realized and
fundamental niches, rather than simply to fundamental ones.

A further concern is that niche-based models are too simplistic to de-
scribe the biological world we know. For instance, a new species arriving
in a community may affect the resources that a whole group of species
depend on rather than invading the niche of an individual species. A clas-
sic, and topical example, is the impact that the invasive water hyacinth
is having on the biodiversity of Lake Victoria.

There is another consequence of this preoccupation with the niche.
Since theirinception, species abundance distributions have been used to
describe a variety of assemblages ranging from small, well-defined en-
sembles to large, heterogeneous groupings of species. Realized niches are
shaped by ecological interactions within a community and the relative
abundance of a species will reflect, to a greater or lesser extent, its suc-
cess in dealing with competitors, predators, and parasites. If the assem-
blage under study represents a functional ecological unit, that is one
where the component species interact with one another, then it is logi-
cally appropriate to apply a niche-based model to it. Tokeshi’s {1993)
view, that such models are most relevant to small ensembles of related
species sharing similar resources, narrows the definition of assemblage
further (see p. 14 for a discussion of the unit of study in investigations of
ecological diversity). It also implies that competition is the most signifi-
cant ecological interaction in these tightly defined domains.

The corollary of this is that the niche-based models may lose their
application in larger assemblages spanning a variety of trophic levels, or
where the species concerned no longer interact with one another, or
where they are subject to a range of abiotic conditions. In such cases sta-
tistical models may be required. This is not to say that such statistical
models are necessarily less valuable than the biological ones. A statisti-
cal model can provide an excellent description of the diversity of an as-
semblage and has many applications, for example in monitoring changes
in community structure following a perturbation. Nor are biological
models invariably inappropriate in species-rich assemblages. Tokeshi'’s
{1996) power fraction model (see below) appears to have considerable
application in such contexts.

Ecological and evolutionary processes

Biological models are mechanistic, that is they attempt to relate the way
in which total niche space is divided amongst the species in an assem-
blage to the abundances of the species in question. Traditionally, niche
apportionment models have assumed a process of niche fragmentation
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{Tokeshi 1990), that is the subdivision of already occupied niches. How-
ever, niche filling is another mechanism by which additional species can
be accommodated. For example, a newly formed habitat such as an
island or lake will provide empty niche space for colonizing species
(MacArthur & Wilson 1967). As the diversity of an assemblage increases,
the distinction between niche fragmentation and niche filling may blur.
Moreover, evolutionary processes can mirror and reinforce ecological
ones. Witness the >500 species of cichlid fish that have evolved in Lake
Victoria in the last 100,000 years (Turner 1999; Verheyen et al. 2003).
Although the distinction between, and relative importance of, niche
filling and fragmentation warrants further investigation, Tokeshi
(1999) points out that niche apportionment models can be applied
to both processes.

Distinctions between deterministic and stochastic models

An important distinction needs to be made between deterministic and
stochastic models. Deterministic models assume that Nindividuals will
be distributed amongst the S species in the assemblage in a predeter-
mined way. For example, the log series model will always assign 12.96
species to the smallest abundance class (of one individual) in an assem-
blage with 52 species and 663 individuals overall. The geometric seriesis
the only deterministic niche apportionment model. Stochastic models,
on the other hand, recognize that replicate communities structured
according to the same set of rules will inevitably vary somewhat in terms
of the relative abundances of species found there. This makes biological
sense. For instance, 10 new islands, of identical size and distance
from the mainland and formed at the same time, would be predicted, on
the basis of MacArthur and Wilson's ( 1967) theory of island biogeogra-
phy, to be colonized by similar numbers of species. None the less, the
relative abundances of those species would undoubtedly differ from
island to island. Stochastic models try to capture the random elements
inherent in natural processes (see also Figure 2.18). Perhaps not surpris-
ingly, they can be more challenging to fit than their deterministic
counterparts. From a practical standpoint it is necessary to know
whether a model is deterministic or stochastic to fit it to empirical data
(see below).

The variety of niche-based models can seem bewildering. Different
assumptions, in terms of the precise nature of niche apportionment,
produce subtly different models. For example, MacArthur’s broken stick
assumes that total niche space is divided simultaneously, whereas nich-
esin Tokeshi’s MacArthur fraction model are partitioned sequentially—
a more realistic ecological and evolutionary scenario. However, both
models predict the same species abundance distribution. The require-
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ment of replicated data adds further complexity to the testing of stochas-
tic models (see below). These complications may explain why niche
apportionment models, and in particular Tokeshi’s refinements of
them, havereceived relatively little attention over the past decade. Nev-
ertheless, these models are an important ecological tool and their poten-
tial in elucidating empirical patterns of diversity has only just begun to
be realized.

From a practical perspective it may be helpful to think of niche appor-
tionment models as being arranged along a continuum from low to high
evenness. The geometric series and dominance pre-emption models rep-
resent assemblages in which evenness is very low, thatis onesinwhich a
few dominant species control most of the resources. The random assort-
ment, random fraction, power fraction, MacArthur fraction, and domi-
nance decay models apply to progressively more even assemblages
(Tokeshi 1999; see also p. 51 below).

Geometric series

Visualize a situation in which the dominant species “pre-empts” propoz-
tion k of some limiting resource, the second most dominant species pre-
empting the same proportion k of the remainder, the third species taking
k of what is left and so on until all species (S) have been accommodated.
If this assumption is fulfilled and if the abundances of the species are
proportional to the amount of the resource they utilize, the resulting
pattern of species abundances will follow the geometric series {or niche
pre-emption hypothesis) (see Figure 2.3). In a geometric series the
abundances of species ranked from the most to least abundant will be
(Motomura 1932; May 1975):

n, = NCk(1-Kk)"™

Where n,=the total number of individuals in the ith species; N=the total
number of individuals; k = the proportion of the remaining niche space
occupied by each successively colonizing species (k is a constant); and
Cr=[1-(1-k)’|"! andis a constant that insures that Zn.= N.

Because the ratio of the abundance of each species to the abundance of
its predecessor is constant through the ranked list of species, the series
will appear as a straight line when plotted on a log abundance/species
rank graph (see Figure 2.4). Drawing this type of plot is one way of decid-
ing whetheradatasetis consistent with the geometric series. Worked ex-
ample 4 explains how to fit the series as well as offering some suggestions
about what to doif the points donot all fall on a straight line. A full math-
ematical treatment of the geometric series can be found in May (1975),
who also presents the species abundance distribution corresponding to
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ggure 2.16 Changes in Fhe relative abundance of plant species in the Rothamsted Park
TS Experl.rrfent over time. The grass has been subjected to continuous application of
nitrogen fertilizer since 1856. {Redrawn with permission from Tokeshi 1993.)

the rank./abur.ldance series. As noted above (see also Tokeshi 1993), the
Ez;):(li;cr(l)((:i Zfsr.les is the only detenmmsfmc member of the group of niche-
Field data have shown that the geometric series pattern of species
abundance is found primarily in species-poor (and often harsh| environ-
ments, or 1'1_1 the very early stages of a succession (Whittaker 1965 1972)
As succession proceeds, or as conditions ameliorate, other mode:Is ma :
provide a better description of the community. However, Tokeshi (1993};
observes that it is possible to relax the need for a very ti/ght association
between the data and the model —in the way that would be required if
one were to formally fit the series —and to view it primarily as a descrip-
th(? stafastic. This means that the series can be fitted approximate{)y
{using linear regression) and the slope of the regression adopted as a mea-
sure of evenness and used to track changes in community structure
(This approach was independently suggested byNeeetal.(1992); see also'
Chapter 4 for an assessment of its utility as an evenness rrlleasure )
Tokeshi (1993) illustrates this method in the context of the classic Park
C‘lras:s ].Egperiment atRothamsted (Brenchley 1958) and shows how effec-
tiveitisin encapsulating changes in diversity (Figure 2.16). This method
also overcomes the problem, so often encountered in comparative stud-
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ies of diversity, where no single model fits arange of communities.*It ob-
viates the need to estimate goodness of fit, a procedure fraught with diffi-
culties (see p. 43) or to make comparisons between deterministic
models, such as the geometric series, and stochastic ones, such as the
broken stick.

MacArthur’s broken stick model

The broken stick model, sometimes known as the random niche bound-
ary hypothesis, was proposed by MacArthurin 1957. He likened the sub-
division of niche space within a community to a stick broken randomly
and simultaneously into S pieces. It is a very uniform distribution—
perhaps the most uniform ever found in natural communities. A major
criticism of the model is that it may be derived from more than one hy-
pothesis (Pielou 1975). Nevertheless, since the existence of a broken
stick distribution provides evidence that an important ecolo gical factor
is being shared more or less evenly between species, it has served to
shape ecological thinking on the processes that might underlie the
patterns observed (May 1975). The model may also be viewed as repre-
senting a group of S species of equal competitive ability jostling for
niche space (Tokeshi 1993).

Like the geometric series the broken stick model is conventionally
written in terms of rank order abundance. The number of individuals in
the ith most important species (n,) is obtained from the term {May 1975 ):

Nl
=2

Where n, = the abundance of the ith species; N = the total number of
individuals; and S = the total number of species.

Wilson (1991} provides a method of fitting a broken stick model to
rank/abundance data. Drozd and Novotny’s (2000) program can be used
to estimate the species abundances associated with the broken stick.

May (1975), after Webb {1974), expresses the model in the form of a
conventional species abundance distribution:

S(a)=[S(s-1)/N]- (1 -n/N)"

The broken stick, like other niche apportionment models, predicts the
average species abundance distribution. Pielou (1975} likens this to

4 Likewise, itis often advocated that a parameter of the log series model, @, can be used as a measure of
diversity, even if the log series model does not perfectly describe the assemblage in question (Kempton
& Taylor 1976; see also Chapter 4).
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Table 2.2 A summary of Tokeshi’s models.

Model Selection of niche for division

Dominance pre-emption Smalilest niche always chosen

Random fraction Niche chosen at random

Power fraction Niche chosen at weighted random

MacArthur fraction Probability that niche is chosen is proportional to its size

Dominance decay Largest niche always chosen

Random assortment No conventional niche apportionment assumed

Composite model Niches of the abundant species are apportioned according
to the dominance pre-emption, random/power fraction,
MacArthur fraction, or dominance decay models while

niches of rare species follow the random assortment model

drawing a card from a well-shuffled deck. If the cards are assigned values
ranging from 1 for an ace and 13 for a king, the average denomination of a
randomly chosen card will be 7. However, a single draw is no more likely
to produce a 7 than any other card. It is only after many repeated draws
that the “expected” average of 7 will be obtained. In a similar fashion the
equation on p. 50 is predicting the distribution of species abundances
across anumber of replicate assemblages.

It is therefore inappropriate to fit the model to a single data set, even,
as I suggested previously (Magurran 1988) as a statistical as opposed to a
biological descriptor. Indeed, the broken stick can be tricky to fit to em-
pirical data (Tokeshi 1993). There are, none the less, a few tests of the bro-
ken stick in the literature. Wilson et al. (1996), for example, found that
the evenness of species abundances in plant assemblages increased over
time. This was reflected in a relatively better fit by the broken stick
model to older assemblages, though the fit was still poor in absolute
terms.

Tokeshi’s models

Tokeshi (1990, 1996) developed several new niche apportionment
models: the dominance pre-emption, random fraction, power fraction,
MacArthur fraction, and dominance decay models (Table 2.2). Each of
these makes the assumption that the fraction of niche space occupied by
a species is proportional to its abundance. Niche space is sequentially
divided amongst the species as they join the assemblage. In all cases
the models assume that the target niche —the one selected for division —
is divided at random. The differences between the models lie in the way
in which the target niche is selected. And the larger thisniche is, relative
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to the others in the assemblage, the more even the resulting distribution
of species abundances will be. Evenness is thus lowest in the dominance
pre-emption model, and increases progressively with the random frac-
tion, power fraction, MacArthur fraction, and dominance decay models.
Tokeshi contrasted these niche apportionment models with two other
scenarios. The random assortment model represents a random collec-
tion of niches of arbitrary sizes (Tokeshi 1990). Finally, the composite
model assumes that more than one rule is required to account for the
structure of the assemblage —the abundances of common species are set
by niche apportionment whereas the abundances of the rare ones are de-
termined by random assortment. These models are reviewed below. In
some cases the distinctions between them are quite subtle and several
are probably impossible to separate in the field. T therefore draw the
reader’s attention to the random fraction model and (the related) power
fraction models as these have, in my opinion, the greatest application
to empirical data. The other models will, I suspect, be used primarily in

theoretical analyses of niche apportionment, or to create benchmark as-

semblages of high or low evenness against which natural assemblages
can be compared.

Dominance pre-emption model

Tokeshi’s dominance pre-emption model assumes that each species in
turn pre-empts more than half of the remaining niche space and is thus
dominant over all remaining species combined (Tokeshi 1990). The pro-
portion of available niche space occupied by each successively coloniz-
ing species is randomly assigned between 0.5 and 1. This model is
conceptually similar to the geometric series and will produce, over many
replications, a similar distribution of species abundances when k=0.75
(see the discussion of geometric series above). Although initially formu-
lated to describe a process of niche filling (Tokeshi 1990), this model can
also be applied to niche fragmentation (Tokeshi 1993, 1999). In the latter
casenew colonists subdivide the niche of the least abundant species. The
geometric series and dominance pre-emption model depict the least
even communities likely to be found in nature. Figure 2.17 illustrates
the pattern of relative abundance produced by this and some of Tokeshi'’s
other models.

Random fraction

Tokeshi’s random fraction model is an innovative model which has the
potential for wide application. It was conceived (Tokeshi 1990) as a se-
quential breakage model in which the available niche space is initially
divided, at random, into two pieces. One of these pieces is then selected
at random for the second division and this process continues until all
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Figure 2.17 Pattern of relative abundance exhibited by a selection of Tokeshi’s niche
apportionment models. (Redrawn with permission from Tokeshi 1999.)

species are accommodated (Figure 2.18). The model represents a situa-
tion in which a new colonist competes for the niche of a species already
in the community, and takes over a random proportion of this previ-
ously existing niche. Tokeshi (1999) subsequently pointed out that the
model can be extended to cover speciation events. This presupposes that
the probability of speciation is independent of the size of a species’ niche.
There are conflicting opinions on how the abundance of a species, or
indeed the extent its range (both measures being surrogates for niche
size), affects the likelihood of speciation. Intuitively it might seem that
species with large range sizes are more likely to speciate than those with
small ones. Darwin (1859) was the first to make this prediction and, as
Gaston and Chown (1999) note, the idea continues to attract support
[see, for example, Rosenzweig 1995; Tokeshi 1999). This is because
larger ranges appear to offer more opportunities for fragmentation or sub-
division by a barrier, thus facilitating allopatric speciation. However, it
has recently been argued (Gaston & Chown 1999] that it is in fact the
species with small to intermediate range sizes that are more likely to
speciate. Widely distributed species have good dispersal abilities (Mayr
1963) which enhance gene flow (Rice & Hostert 1993), whereas species
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Figure 2.18 Hlustration of Tokeshi’s random fraction miodel‘ In th'is modelniche space N
(represented as a pie digram)is injtially split at random into two pieces to fOliIn (a). (Niches
that have been formed by the split are indicated by stippling.) One of these pieces
(outlined in bold)is chosen at random and then split at random (indicated by an arrow) to
form (b). The process is repeated (c and d) until S species have been ?ccommodated. Every
time the model is rerun a slightly different pattern of niche allocation emerges. The one
{llustrated here represents the average result {for = 5 species) after 250 runs. -
Rank/abundance plots illustrate the relative species abundances produced following each

successive division.

with poor dispersal abilities will tend to form patchy populations and
thus have higher speciation rates (Gaston & Chown 1999). Although the
random fraction model is conceptually simple, Tokeshi {1990) and Fesl
(2002) found that it provided a good fit for a small community of fresh-
water chironomids. . ’

Drozd and Novotny (2000) have created a freeware Microsoft Exc.el—
based program® that can be used to model the distributiog of species
abundances associated with the random fraction, power fraction, broken
stick, and other niche division processes.

Power fraction model

As noted above, the majority of niche apportionment models are logi—
cally appropriate for small assemblages of related and/or ejcologically.m—
teracting species. Tokeshi’s power fraction model {1996} is an exception
that is applicable to species-rich assemblages. Like tth ]:'andorn fraction
model it envisages that niche space is initially subdivided at random.

5 http://www.entu.cas.cz/png/PowerNiche/.
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Box 2.1 The power fraction model

In Tokeshi’s power fraction model, the
probability that a niche will be targeted by an
invading species is a function of its size when
that size has been raised to the power K. Kranges
between 0 and 1. Three scenarios are illustrated
below (Figure B2.1).

Imagine an assemblage of three species which
have abundances of 50, 25, and 25 units. Niche
size is assumed to reflect the abundance of a
species. Abundances (x) here are expressed as
percentages but they could equally well be
represented as proportions. These abundances
are first raised to the power K. When K=0, the
abundance of each of the species becomes 1.
This means that every species has an equal
probability of being selected for niche
subdivision. In this scenario, the power fraction
and the random fraction are identical, since the
(random) choice of a niche for subdivision is
made without regard to the size of that niche. A
value of K=0.5, on the other hand, is equivalent
to a square root transformation of abundance. In
other words, species A is now 1.41 times as likely
to be selected as either species B or C. In the final
scenario, K=1 and the initial abundances are

unaffected and the niche of species A has double
the probability of being split as either B or C. This
is the same as the MacArthur fraction model.
The randomization process is illustrated for
scenario 2 (K=0.5) in Figure B2.1. The
transformed abundances are now presented as
cumulative precentages and a random number
(between 0 and 100) drawn. If thisrandom -
number happened to be 48, species B would
be chosen (B occupies the slot of >41.4% and
<70.7% in the cumulative abundance
distribution). B’s niche is then divided at
random into two pieces. These new niches will
have a summed abundance of 25 units since itis
the true (untransformed) niche space that is
being divided — the weighting simply changes
the probability with which a niche of a particular
size is chosen. This continues until the
assemblage reaches its designated richness.
Since each run of the model produces a
slightly different outcome the whole process is
repeated a large number of times so that the
mean pattern of relative abundance is generated.
This can then be compared with empirical
data.

where K= 0 where K= 0.5 where K=1
Species X XK X xK X xK
A 50 1 A 50 7.07 A 50 50
B 25 1 B 25 5 B 25 25
C 25 1 C 25 5 C 25 25
= random fraction = MacArthur fraction
Weighted niches A Y niche sizes (%)
41.4%
7.07 units
41.4%
B
5 units 293%
70.7%
C
5 units 29.3%
100%

Figure B2.1
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One of the resulting niches is then selected and again split at random.
The process continues until all species have been accounted for. How-
ever, the name of the model, power fraction, highlights a subtle differ-
ence between it and the random fraction model. In the random fraction
model the choice of niche to be split is strictly random. By contrast, in
the power fraction model, the probability that aniche will be splitis pos-
itively, though rather weakly, related to its size (x) through a power func-
tion K (that is xX where K ranges from 0 to 1). The closer K approaches 1,
the more likely it is that the largest niche will be selected for fragmenta-
tion. Indeed, when K = 1 the power fraction model resembles the
MacArthur fraction model {in which larger niches have a greater proba-
bility of fragmenting). On the other hand when K =0, a completely ran-
dom choice of niche fragment is restored, and the model corresponds to
therandom fraction. (See Box 2.1 for an illustration of the power fraction
model.)

Tokeshi (1996) showed that when the parameter K was set at 0.05 the
power fraction model provided a good description of a range of species-
rich assemblages. In fact virtually all the assemblages he investigated
could be accounted for by a value of K<0.2. He interprets this finding as
evidence that larger niches have a slightly greater chance of being frag-
mented. Such fragmentation could occur either ecologically (when a
new species colonizes an assemblage) or evolutionarily (when speciation
takes place) (Gaston & Chown 1999).

As already observed, a reduction in the value of K increases the resem-
blance between the power fraction and random fraction models. Since K
is apparently low in natural assemblages there may be many instances in
which both models describe observed patterns of species abundance
equally well (Tokeshi 1999).

One of the frustrations of diversity measurement has always been the
necessary recourse to different models to account for contrasting pat-
terns of species abundance. The fact that the value of the parameter K can
be adjusted to depict different forms of niche apportionment means that
a more integrated approach to the investigation of ecological diversity
may at last be possible. This benefit is enhanced by the ability of the
power fraction model to account for patterns of species abundance in
large as well as small assemblages and at scales ranging from ensemble to
geographic region (Tokeshi 1999). This flexibility can be viewed as a
weakness rather than a strength (Gaston & Blackburn 2000).

MacArthur fraction model

One longstanding concern about the broken stick model is the unrealis-
tic manner in which niches are split simultaneously. Tokeshi {1990,
1993) thus recast the process of niche fragmentation in a sequential, and
therefore ecologically (and evolutionarily) more plausible, form. The
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emphasis on sequential niche division also highlights the relationship
between this model and other niche apportionment models. Both the
MacArthur fraction and the broken stick models lead to the same result,
in terms of the predicted species abundance distribution. This acts as a
useful reminder that observation of a given pattern of species abundance
does not necessarily validate the precise mechanisms assumed by a
model predicting the same pattern. Further investigation is always
warranted.

In the MacArthur fraction model the probability of a niche being
fragmented isrelated toits size. Thus, larger niches are more likely to be
subdivided by an invading species or through speciation. This process
generates a very uniform distribution of species abundances and is only
plausible in small communities of taxonomically related species. As
already noted, the MacArthur fraction is a special case of the power frac-
tion model, albeit one unlikely to pertain in species-rich assemblages.

Dominance decay model

An even more uniform pattern of species abundance is envisaged by
Tokeshi’s dominance decay model. In it the largest niche is invariably
split. The sizes of the resulting fragments are chosen at random. (If the
largest niche was always split in a fixed way this model would be the
inverse of the geometric series and thus deterministic. Since the way
in which the largest niche is split is decided randomly the model is sto-
chastic, and therefore the mirror image of the dominance pre-emption
model.) To date there are no empirical data indicating that communities
aspredicted by Tokeshi’s dominance decay model canbe foundin nature.
This may, of course, be because insufficient investigations have been
conducted or because such an even distribution is genuinely not achiev-
able under natural conditions. In any case the model performs the useful
role of setting the upper level of evenness that might potentially be
achieved by a niche apportionment process.

Random assortment model

Tokeshi realized that there may be situations where the abundances of
species in a community vary independently of one another. This might
arise if there is no relationship, or only a very weak one, between niche
apportionment and species abundances, or if the community is in a state
of flux, perhaps because it is subject to major environmental changes,
and competitionisnotsetting the limits on species abundances. Tokeshi
(1993} notes that this model behaves as a stochastic analog of the geo-
metric series model in which k = 0.5, and that it is similar in spirit to
Caswell’s (1976) neutral model (see below), which also assumes that the
abundances of different species are independent of one another.
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Composite model

The preceding models have each assumed that niche appor'?ionrpent can
be explained by a single rule. This may represent an overmmphﬁcatlog
since two or more processes could equally well be involved. Tokeslp
(1990) thus formulated his composite model. It assumes that competi-
tion is more likely to occur amongst abundant species and that these
would therefore divide available niche space according to one of the
niche apportionment models —dominance pre-emption, rando_m_/ power
fraction, MacArthur fraction, or dominance decay. The remaining rare
species might be predicted to achieve their niches on the basis of random
assortment. One potential complication is knowing where to set jche
boundary between the more abundant and less abundapt species.
(Gaston's (1994) quartile criterion of rarity (reviewed below) is one solu-
tion.) Another is deciding which niche apportionment scenarios to test.
"1t is also possible to extend the model to accommodate more than two
processes of niche subdivision (Tokeshi 1999). The composite model has
not yet been comprehensively explored but its attempt to encapsulate
ecological realism should prompt further investigation.

Hughes’ dynamic model

Hughes’ (1984, 1986) concern about the log normal model led him‘ to
devise his own dynamic model. It invokes competition as the structuring
mechanism and was developed to explain the patterns of species abun-
dance that characteristically arise in marine benthic communities. These
assemblages often have more abundant species than predicted by the log
series distribution but too few rare species to produce the mode that de-
fines the log normal distribution. By visually inspecting rank/ abundange
plots from 222 animal and plant communities, Hughes concluded tha_lt his
dynamics model predicted species abundance patterns more effectively
than either the log normal or log series models. Barange and Campos
(1991}, however, preferred the Zipf-Mandelbrot model and felt it to be
more appropriate in the light of the hierarchical organization of natural
systems. Hubbell’s (2001) neutral model (discussed below) makes anum-
ber of parallel assumptions. Both approaches, for example, incorporate
birth and death processes. However, Hughes’ model is more complex and
specific than Hubbell’s and to date has received relatively little attention.

Other approaches

Caswell’s neutral model

Caswell’s (1976) neutral model is rightly celebrated for its innovative
épproach to the analysis of community structure. In essence the model
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asks what the species abundance patterns in acommunity would be if all
biological interactions were removed. Intriguingly, both species rich-
ness and evenness in real world communities tend to be lower than in the
neutral landscape of Caswell’s model. The deviation statistic, V, can be
used to compare observed diversity (H’) with the predicted neutral diver-
sity (E(H’)).

[F" - E(H')]
SD(H’)

V=

(H’ is the Shannon diversity index. It is examined in detail in Chapter 4.)
Values of V > 2 or V < -2 denote a significant departure from neutrality
{Clarke & Warwick 2001a). Goldman and Lambshead {1989) provide a
computer program for calculating V; thisis implemented in PRIMER.® Al-
though V is sometimes treated as a measure of environmental stress
(Platt & Lambshead 1985; Lambshead & Platt 1988)it needs to be applied
with caution. Given the complex relationships between richness and
evenness innature, Vis probably only useful as a measure of disturbance
when data from control unperturbed assemblages are available as a
benchmark. Other more promising methods of assessing environmental
stress are explored in Chapter 4. Moreover, Hayek and Buzas (1997) note
that for reasonably large values of S and N the expected values of H' gen-
erated by the neutral model resemble those predicted by the log series
model. The congruence in the outcome of different models has been
noted already in this chapter and provides a further reminder that the
biological interpretation of results is not always straightforward.

Hubbell’s neutral theory of biodiversity and biogeography

Hubbell {2001) has developed an ambitious new neutral model that ex-
tends MacArthur and Wilson’s equilibrium theory of island biogeogra-
phy toaccount forregional as well aslocal patterns of biodiversity. In this
approach metacommunities are defined as large-scale assemblages of
trophically similar organisms that occur across evolutionary timescales.
Each metacommunity is comprised of a set of local communities.
Hubbell’s model makes the assumption that communities are always
saturated with individuals, and that there is a fixed relationship between
Nand area (A}). No new individuals can be added through birth or immi-
gration until N has been reduced by death. The relative abundance of
each speciesinalocal community isrelated toits abundance in the meta-
community; species abundances in the metacommunity are in turn
shaped by speciation. Hubbell’s theory can be encapsulated in a single di-

6 www.pml.ac.uk/primer/index.htm.



60 Chapter 2

mensionless biodiversity number 6, which is equal to twice the
speciation rate multiplied by the metacommunity size. It is this bio-
diversity number that predicts the relative abundance of species. If, for
instance, metacommunitysize {N)isheld constant, while speciationrate
is increased, more rare species will result. Alternatively, the speciation
rate (v) may be held constant and the consequences of varying metacom-
munity size explored. Different models of speciation lead to different
species abundance distributions in the metacommunity. For example, if
point mutation, whereby new species arise as a single individual, is the
dominant form of speciation, species abundances in the metacommun-
ity will follow a log series distribution. In contrast, the random fission
model of speciation, which produces two approximately equally abun-
dant daughter species, results in a zero-sum multinomial distribution of
species abundances. {See Hubbell 2001 for a full description. )

When immigration is unlimited the pattern of species abundance in
a local community will be identical to that in the metacommunity
(though species richness will be reduced as the spatial dimensions of the
local community, and therefore the number of individualsit can support,
will also be smaller). It will thus follow a log series or a zero-sum multi-
nomial distribution, depending on the mode of speciation. Alterna-
tively, if immigration is severely limited, perhaps because the local
community is remote and there are barriers to dispersal, species abun-
dances will resemble a log normal distribution. This is explained by the
relationship between N and A. Extinctions must be compensated by in-
creases in the abundance of existing species since there are few colonists
to contribute new, but generally rarer, species to the community. At in-
termediate immigration rates the distribution of (logged) species abun-
dances becomes skewed to the left—the pattern often observed in
natural assemblages (Gaston & Blackburn 2000). Under such dispersal
limitation the distribution of species abundances in local communities
follows the zero-sum multinomial distribution, irrespective of the shape
of the distribution in the metacommunity.

Hubbell’s model is remarkable for its ability to account for a wide
range of empirical species abundance distributions.” None the less the
assumption of neutrality —defined by Hubbell (2001, p. 6) as the “per
capita ecological equivalence of all individuals of all species in a tropi-
cally defined community” —runs against the grain for many ecologists
familiar with the functional diversity of ecological systems (Brown
2001). It seems unlikely that the identity of the dominant species in a
community is purely a matter of chance. Gaston and Blackburn (2000)
also take issue with the assumption that assemblages are saturated with
respect to the number of individuals they support. Magurran and Hen-

7 McGill (2003), however, finds that the log normal distribution fits empirical data better than Hubbell’s
zero-sum multinomial.
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derson (2003) have independently shown that dispersal limitation can
account for the characteristic left skew in the species abundance distrib-
ution of local communities. In contrast to Hubbell’s approach, biological
interactions are assumed to play an important role. We use a mixture of
the log series and log normal models to account for empirical patterns.
Hubbell’smodel has already stimulated a great deal of interest and will
undoubtedly give rise to many new studies. One complication is that
simulations are required to estimate the fundamental biodiversity num-
ber and dispersal rate for empirical data sets. Hubbell (2001) provides an
algorithm for computing the expected relative abundance distribution
of a metacommunity assuming point mutation speciation. A fitting
routine is promised for the zero-sum multinomial (see also McGill 2003).

Fitting niche apportionment models to empirical data

How does an investigator establish whether an assemblage conforms to
one (or more) niche apportionment models? Clearly the best approach is
to have an expectation of possible modes of niche subdivision based on
an understanding of the ecology of the assemblage in question. For ex-
ample, if competition is known to be important it is logical to apply a
model that emphasizes this process. Beyond this, the size of an assem-
blage and the degree of evenness in the observed pattern of species abun-
dance may indicate a starting point.

In statistical (and deterministic) models, as noted earlier, the usual
procedure is to compare the observed pattern of species abundance with
the patterns predicted by a particular model. Stochastic models present a
different challenge. Rather than assuming (as deterministic models do)
that N individuals are distributed amongst S species in a fixed manner,
stochastic models recognize that random variation in the natural world
will produce a slightly different outcome every time a community is as-
sembled according to a given set of rules. As a consequence the investi-
gator needs to be able to predict the mean abundances of each of the
species in an assemblage, and to assign confidence intervals to these
mean values. This necessitates a simulation procedure in which the
community is repeatedly reconstructed. Strictly speaking, comparisons
between these expected abundances and a real assemblage should only
be made when replicated observations of the latter are used (Tokeshi
1990, 1993). This clearly places greater demands on the investigation,
particularly if Tokeshi’s {1993) advice to take more than 10 samples per
assemblage (over space or time)is followed. In fact, since studies of niche
apportionment tend to be small scale and intensive this requirement
may not be as onerous as it initially appears. Furthermore, there are good
reasons why replication should become standard practice in investiga-
tions of diversity. Replication means that variation in diversity, over
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space and time, is amenable to statistical analysis (Chapter 4) and that
estimates of total species richness are feasible (Chapter 3).
Tokeshi (1990) pioneered a new way of testing these stochastic models
(see also Worked example 5). To summarize, n > 10 samples are taken.
Species (S) are ranked from most abundant to least abundant. The mean
abundance of the most abundant species (x,_,) is calculated. This is re-
peated for the next most abundant species (x,_,) and so on until the least
abundant species (x, ¢} has been included. (In most cases, particularly
those where the processes underlying niche fragmentation are of pri-
mary interest, it is not necessary to know the identities of the species in
each replicate and the mean value of x,_, may be calculated regardless of
the actual taxonomic species involved. In certain other circumstances,
however, it may be important to know which species is which; see
Tokeshi (1999) for a discussion.) These mean abundances constitute the
observed distribution. The expected abundances are then estimated for
an assemblage of the same number of species (S). To do this a model is
chosen and then simulated a large number of times (say N =1,000) using
S species. (The randomness built into the models means that each simu-
lation will lead to a slightly different outcome.) The mean () and
standard deviation (0,) of the abundance of eachrank, i=1toi=S5, are cal-
culated. This allows the user to assign confidence limits to the expected
abundance of each rank. These confidence limits are set in the usual way,
with the important consideration that the sample size is n (that is the
number of replicated samples of the assemblage) rather than N {the num-
ber of times the model was simulated).

R(Xl») =U;x rci/«.@

where r defines the breadth of the confidence limit. It is 1.96 for a 95%
limit and 1.65 for a 90% limit. If the mean observed abundances fall
within the confidence limits of the expected abundances (see Worked
example 5), the model can be said to fit the assemblage. Comparison
between the observed and expected distributions is simplified if abun-
dances are treated as proportional, that is the sum of the abundances (x;)
across all S speciesis Zx,= 1. Graphic presentation of the result is further
clarified if these proportional abundances are plotted on a log, , scale. An
advantage of this simulation approach is that it makes subtle distinc-
tions between the possible distributions and spares the user the frustra-
tion that often accompanies the application of deterministic models,
several of which may apparently fit the same data set.

A potential problem arises if the number of species (S) varies from sam-
ple to sample (Tokeshi 1993). This should not matter if the variation is
slight. Alternatively, the difficulty may be overcome by adjusting S to a
common value, provided that such a value of S accounts for most of the
abundance (>95 %) in the replicated samples.
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Figure 2.19 Testing the fit of a number of assemblages to a single model. Here a power _
fraction model with k =0.05 is fitted to a series of species-rich assemblages. The solid line
is the standard deviation of log, abundance predicted by the model. Broken lines represent
+2 ¢ d. of this standard deviation. Theoretical values are derived from a large number of
simulations. The graph reveals that miscellaneous assemblages conform to the power
fraction model with k =0.05. (Redrawn with permission from Tokeshi 1999.)

What happens if it has not been possible to replicate the sampling?
Tokeshi (1999) notes that it may be legitimate to compare unreplicated
ranked abundance data with the mean (2 s.d. or £95% confidence lim-
its) simulated values of a model. Alternatively, the standard deviation of
the log, observed abundances of species can be plottedon a grgph show-
ing the mean (£2 s.d.) of the log, expected abundances. This method
is useful if the goal is to determine whether a number of species-rich
assemblages share a common abundance distribution (Figure 2.19).
Tokeshi also reminds us that unreplicated data are not appropriate for
use with either the broken stick or MacArthur fraction models.

Bersier and Sugihara (1997) recognized that Tokeshi’s method of relat-
ing stochastic species abundance models to field data represented an
important first step but highlighted some shortcomings in the method.
They observed that the test does not permit the rejection of data sets in
which the variance is greater than that predicted by the model. Addi-
tionally, since the mean observed abundances of all species must lie
within the expected confidence intervals, rich assemblages are more
prone to rejection than species-poor ones. Distributions may be skewed,
rendering symmetric confidence limits inappropriate and species ranks
nonindependent. Bersier and Sugihara’s (1997) solution was to propose a
Monte Carlo test. One drawback to their approach is that it is computa-
tionally intensive. Cassey and King (2001) offer some important clarifi-
cations of Bersier and Sugihara’s (1997) method and provide a test that
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makes it computationally more efficient. Moreover, the algorithm that
Cassey and King (2001) developed to implement the test, which is writ-
ten for sas, is freely available from the authors on request.

General recommendations on investigating patterns
of species abundance

Previously, I (Magurran 1988) suggested that it would be informative to
explore empirical data in relation to four species abundance models: the
geometric series, log series, log normal, and broken stick distributions.
These represent situations of increasing evenness. The expectation was
that most assemblages would be described by a log normal distribution
and that any departure from this pattern warranted further investiga-
tion. An obvious drawback of this approach is that it treated the models
primarily as statistical descriptors of patterns rather than using them to
infer biological processes. Interpretation could be impeded if the data
were described by more than one model, or even by none at all.

Tokeshi’s (1990, 1993, 1996, 1999) revaluation of species abundance
distributions, his innovative niche apportionment models, and other
advances in the field mean that this advice must now be updated.
1 It is important at the outset to know what the precise aims of the in-
vestigation are, and which hypothesis, if any, is being tested. This may
sound obvious but it is a point that is often overlooked.
2 If the purpose of the investigation is to describe species abundance
patterns, or quantify changes over time or space, for example through
succession or following pollution, then replication of sampling, though
strongly recommended, is not strictly necessary. However, itis essential
that sampling be sufficiently thorough to reveal the true species abun-
dance distribution (see Chapter 5 for a further discussion of sampling).
On the other hand, should the study aim to relate the observed patterns
to the ways in which the ecological niches have been carved up by the
constituent species, replicated sampling increases the power of the
investigation immeasurably.
3 The aims of the project will also help delineate the boundary of the as-
semblage under investigation. For example, an investigator interestedin
the biological basis of abundance patterns will often focus on a small
assemblage of closely related organisms, since ecological interactions,
particularly competition, are more likely to be discernible there (but see
discussion of the power fraction model above). Tokeshi’s niche appor-
tionment models are fitted most easily to samples with the same species
richness. Comparison of communities is also facilitated if they are
equally speciose. '

Studies involving the description of pattern are less constrained by
size and can extend from small ensembles to large heterogeneous assem-
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blages. However, comparisons between assemblages are again more
straightforward, and probably also more meaningful, if species richness
doesnot vary excessively.

4 In almost all investigations the most useful next step is to graph the
data using a rank/abundance {(Whittaker) plot. These plots are often
the best way of illustrating differences in evenness and species richness.
Wilson (1991) provides a method for fitting several key species abun-
dance models to these plots {see also point 6 below).

5 If understanding niche apportionment is the goal, the investigator
should fit one or more of Tokeshi’s models. In some cases it may be use-
ful to-examine a range of models, but in others, particularly where it has
been possible, from a priori knowledge of the system, to arrive at a
hypothesis of niche apportionment, it will be obvious which model or
models totest. Although there have been relatively few tests of Tokeshi’s
models to date, the random fraction model appears to be most generally
applicable to small assemblages and the power fraction to larger ones
{these models being, of course, closely related). It may not always be fea-
sible, butideally the next step would be to conduct experimental manip-
ulations to confirm the niche apportionment mechanisms implied by
the analysis.

6 Alternatively, when the objective is to describe the distribution of
species abundances, an investigator has two options (which need not be
mutually exclusive). The firstis to examine the rank/abundance plot and
compare communities using either k (the parameter of the geometric se-
ries) or the slope of a linear regression. This method neatly and intuitive-
ly encapsulates differences between the assemblages. It does not require
the user to assess goodness of fit but simply equates the diversity of the
assemblage with the slope of the regression. Analysis of covariance
(ANCOVA] can be used to test for differences in slopes. The second op-
tionisto fit one ormore models to the data. Depending on the outcome it
may be possible to draw biologically interesting conclusions. For exam-
ple, alogseries distribution highlights the preponderance of rare species,
and produces a robust diversity measure. A lognormal distribution may
be auseful gauge of pollution stress. The geometric series is often indica-
tive of a species-poor assemblage and could imply that resources are
being apportioned according to simple rules. The difficulty, of course, is
that several different distributions may equally well describe the same
data set. Moreover, the truncated log normal distribution is so versatile
that it is a poor discriminator of communities. However, this problem
can be largely overcome if the assemblages in question are reasonably
speciose —with at least 30, but ideally 50 or more, species and where the
presence of a mode in the distribution of {logged) species abundances in-
dicates that a log normal distribution is plausible. Given the continuing
debate, evidence that “natural” assemblages, as opposed to large hetero-
geneous collections of samples, follow a fully unveiled log normal distri-
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bution would be an interesting, and undoubtedly publishable, result.
The presence of log left-skew will also stimulate further investigation
and analysis.

7 It may not be necessary to rely on species abundance distributions
to distinguish between assemblages. Tokeshi {1993) notes that the
Kolmogorov-Smirnov two-sample test can be used to determine
whether two data sets have the same pattern of abundance. However, it
is essential to make sure that the data have been collected in a standard
way (see Worked example 3).

Rarity

This chapter has concentrated on species abundances. But if some
species are common, then others, by definition, must be rare. Rarity, like
abundance, is a relative concept; it will depend on the scale of the inves-
tigation and the manner in which the assemblage has been delineated.
Difterent authors emphasize different aspects of abundance —endemici-
ty, local population size, habitat specialization, and so on—when defin-
ingrarity. Gaston (1994 reviews these approaches and provides a unified
definition of rarity. His method is particularly relevant to biodiversity
measurement.

In the preceding discussion in this chapter, and in line with common
practice, rare species were classed as those falling at the lower end of the
distribution of species abundance. The boundary between rare species
and the rest was not specified. Where this is desired, Gaston’s (1994)
advice is to place the cut-off point at the first quartile in terms of pro-
portions of species. Thus, in an assemblage of 40 species, the 10 with the
lowest abundance would be defined as rare (Figure 2.20). Likewise, the
upper quartile can be used to identify common species. One potential
drawback to this approach is that it de-emphasizes the proportion of low
abundance species in an assemblage (Maina & Howe 2000). For instance,
Robinson et al. {2000) noted that 33 % of forest birds in Amazonian sites
had densities of less than, or equal to, one pair per 100ha, while Pitman
etal.{1999)found that 88 % of Amazonian tress had densities of less than
one individual per hectare over a network of forest plots in Manu Na-
tional Park, Peru. A small number of species will often account for 90%
or more of the total abundance (see Figure 2.4 for an example) and one
might legitimately consider the remaining majority to be rare. In addi-
tion, a rigid definition, such as the quartile criterion, may mask differ-
ences in the preponderance of rare species in different assemblages.
When Robinson et al. {2000) examined the diversity of forest birds com-
munities in Panama they found that only 17% of species were rare in
contrast to 33 % of species in Amazonia.
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Figure 2.20 Rarity amongst freshwater fish in Trinidad and Tobago according to Gaston’s
quartile criterion. Fish abundance was measured in two ways — either as numbers of
individuals or as biomass. Data were collected by Phillip {1998). The quartiles in the two
distributions are shown as broken lines; fish species that fall to the left of the individuals
line or below the biomass line are classified as rare. While there is substantial agreement
about the nonrare species, only five [rather than the expected 10) out of the 41 species
recorded are unequivocally rare according to both measures of abundance.

Abundance can be measured in different ways (see Chapter 5 for a full
discussion). Different abundance measures may generate different sets
of rare species; the degree of overlap will vary with taxon. In the fresh-
water fish example in Figure 2.20 there is some consistency between
those species identified as rare on the basis of numbers of individuals,
and those designated as rare using biomass data. As the variance in the
biomass of individuals increases, agreement regarding the identities of
rare species will diminish.

In addition, it is possible to apply absolute definitions of rarity. For in-
stance, in an investigation of insect herbivores in New Guinea (Novotny
& Basset 2000}, rare species were classified as those represented by a sin-
gle individual (otherwise known as a singleton). The same number of
species from the upper end of the species abundance distribution were
then defined as.common, and the remainder designated “intermediate.”
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Singleton species are prevalent in insect assemblages and often consti-
tute the largest abundance class. Indeed, this is why the log series distri-
bution appears to have particular application in such contexts. Novotny
and Basset (2000) found that when the assemblage was defined as the
group of species associated with a single plant species, on average 45%
of leaf-chewing and sap-sucking insects were singletons. A somewhat
smaller proportion, 278 of the 1,050 species recorded, were represented
by asingle individual (unique singletons). While still an impressive total,
thisillustrates how even absolute definitions of rarity are contingent on
the sampling universe and are in a sense relative. The investigation rep-
resented 950 person days of sampling. None the less, Novotny and Basset
{2000] speculate that the unique singletons may belong to species that
feed on plants other than those studied. The alternative explanation,
that these species are genuinely sparsely distributed, would require
them to persist at population densities below one individual per hectare
of forest.

Longino et al. (2002) point out that sampling methodology can have a
large impact on the perception of rarity. Their investigation of ants in
Costa Rica employed eight different sampling methods. Rare species
were defined as being locally unique (that is found in one sample only).
The proportion of unique species varied from 0.13 to 0.47 (average 0.33)
when data sets, collected using the different sampling techniques, were
examined separately. However, when all data were combined the pro-
portion of unique species dropped to 0.12 {51 out of 437). This may in part
be a numerical effect—as more individual samples are collated the
chances of identifying new species diminishes. But more importantly
the different sampling methods insured that a wide range of ant niches
were searched (see also Chapter 5). Longino et al. (2002) then went on to
examine the status of their 51 locally unique species. The rarity of 20 of
these species could be attributed to “edge effects,” that is species likely
to be abundant at the La Selva Biological Station but hard to sample, or
species known to be common elsewhere but rare in this particular geo-
graphic locality. Only six species —the “global uniques” —were found in
asingle sample, and nowhere else on earth,

An “absolute” definition of rarity is also generally adopted when the
abundance-based coverage estimator is used to deduce the species rich-
ness of an assemblage (Chazdon et al. 1998; Colwell 2000). In this case
species having 10 or fewer species are typically defined as “rare.” Chap-
ter 3 provides more details.

‘As the scale of the investigation broadens, abundance data become
harder to compile. With the exception of particularly well-studied taxa
such as British birds, good abundance data are lacking for geographic
regions. An alternative, and often more practical, approach is to look in-
stead at the distribution of species’ range sizes and use this as a surrogate
of abundance. Gaston (1994) assesses various methods of quantifying
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Table 2.3 The distribution of seven forms of rarity in the British flora using 160 species
{after Rabinowitz et al. 1986, with permission).

Gegraphic
distribution: Wide Narrow
Habitat specificity: Broad Restricted Broad Restricted
Local population size: 36% 44% 4% 9%
somewhere large
Local population size: 1% 4% 0% 2%
everywhere small
Table 2.4 Seven forms of rarity amongst freshwater fish in Trinidad and Tobago using 40
species (after Phillip 1998, with permission).
Gegraphic
distribution: Wide Narrow
Habitat specificity: Broad Restricted Broad Restricted
Local population size: 29% 13% 3% 16%
somewhere large
Local poﬁulation size: 13% 13% 0% 13%
everywhere small

range size. He also notes that species that are categorized as rare on the
basis of abundance, will also generally be identified as rare on the basis of
their range size.

There are exceptions, however. Some species inevitably fall within
the quartile criterion of distribution but not abundance (and vice versa).
Gaston (1994) resists the temptation to treat these as different forms of
rarity. Other authors have argued that rarity is a multifaceted concept.
Rabinowitz and her colleagues (Rabinowitz 1981; Rabinowitz et al.
1986), for example, argue that a species’ rarity statusis a function of three
characteristics —geographic distribution, habitat specificity, and local
population size. The authors (Rabinowitz et al. 1986) categorized British
flora in this way and found that only some 36% of species were unequiv-
ocally common (Table 2.3). One category of rarity —narrow geographic
distribution, broad habitat specificity, and an invariably small local pop-
ulation size —contained no species at all. A similar result was obtained
when the freshwater fish in Trinidad and Tobago were classified in the
same way (Phillip 1998)(Table 2.4), although when Thomas and Mallorie
(1985) investigated patterns of rarity in butterflies of the Atlas Moun-
tains in Morocco they did find a single species {out of 39) that matched
these criteria. Evidently, this form of rarity is biologically hard to
achieve.
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This approach has considerable potential in conservation biology. In-
deed, the International Union for Conservation of Nature and Natural
Resources’ “red data book” definition of rarity (Gaston 1994} incorpo-
rates the same variables:

Taxawith small world populations that are not at present Endangered or
Vulnerable but are at risk. These taxa are usually localised within re-
stricted geographical areas or habitats or are thinly scattered over a more
extensive range.

However, in the context of biodiversity measurement, rarity is best
viewed as a continuous, as opposed to a categorical, variable. This is be-
cause we are generally engaged in providing quantitative comparisons
between assemblages anditis easiertoachieve theseif rarity is measured
using a single metric. Categories of rarity are potentially less objective.
They demand detailed information on the ecology of all the species in an
assemblage. In addition, Rabinowitz’s seven forms of rarity tend to be as-
signed at the level of the geographic region whereas many investigations
of biological diversity take place at more local scales (but see also Chap-
ter 6). Deciding where the rarity boundary falls on the continuum of rare
to abundant species remains a difficult challenge. Gaston’s (1994} quar-
tile criterion provides a useful starting point but because assemblages
vary in their evenness, and because the proportion of low abundance
species will change according to the intensity of sampling and the scale
of the investigation (the veil line again}, itisnot universally applicable. If
the quartile method seems inappropriate, the usual alternative is to
identify the species with the lowest abundance or incidence as rare—
as Novotny and Basset (2000), Pitman et al. (1999), and Robinson
et al. (2000) have done. The extent to which perceptions of rarity are
governed by sample size will be considered further in Chapter 5 and the
relationship between rarity and § diversity in Chapter 6.

This chapter has come full circle. It began by noting that assemblages
can vary considerably in species richness but all are characterized by un-
even distributions of abundance. The precise shape of the distribution of
species abundances is of considerable fundamental and applied interest.
1t can shed light on niche apportionment in communities, help explain
why particular levels of richness can be sustained, and monitor the
effects of pollution stress (Chapter 5). Species abundance distributions
may be used to estimate species richness—the topic of Chapter 3. Alter-
natively, statistics can be employed to summarize the diversity or even-
ness of an assemblage, but even though these are sometimes called
“nonparametric” measures, their performance is mediated by the under-
lying pattern of species abundances. These statistics will be examined in
Chapter 4.
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Summary

1 Different plotting methods can be used to display the distribution of
species abundances. Of these the rank/abundance plot (or Whittaker
plot) and log{x) frequency distribution {or Preston plot) are most widely
used.

2 Species abundance distributions can be classified as statistical or bio-
logical. Statistical models describe observed patterns whereas biological
modelsattempt to explain them. Most statistical models are determinis-
tic and most biological models stochastic.

3 The log series and log normal models are the widely used statistical
models. There is still debate over whether the lognormal is the expected
distribution for large, unperturbed ecological assemblages. Empirical
log normal distributions tend to log left-skewed. Reasons for this are
explored.

4 Motomura’s geometric series and MacArthur’s broken stick model are
two early examples of biological models. Tokeshihas proposed a series of
new models reflecting different scenarios of niche apportionment. Of
these the random fraction model and the related power fraction model
appear to have greatest application to small and large assemblages,
respectively. Methods of fitting niche apportionment models are
discussed.

5 Null models of species abundance, including Caswell’s and Hubbell’s
neutral models are reviewed.

6 General recommendations on investigating patterns of species abun-
dance are given. The goals of an investigation will determine whether a
biological or statistical model is appropriate. This in turn will guide the
sampling strategy. Since species abundance distributions can be com-
pared directly it may not be necessary to fit a model.

7 Rarity is discussed. Relative and absolute definitions of rarity are pre-
sented. From the perspective of biodiversity measurement, rarity should
be treated as a continuous variable. Gaston’s definition—that rare
species are those that fall in the lower quartile of the species abundance
distribution —provides a useful working definition.



chapter three
How many species?!

Describing the species abundance distribution of an assemblage is one
thing; providing a synoptic measure of its diversity represents a rather
different challenge. Considerable effort, particularly in the 1950s and
1960s, was devoted to finding a single measure that would perfectly en-
capsulate the diversity of the sample or community under study. This
quest was ill fated from the beginning as biodiversity isnot reducible to a
single index (see Chapters 2 and 4 for further discussion of this point).
Rather, it is necessary to decide which component of diversity one as-
pires to measure and then choose the index that performs this task most
effectively.

At first sight, species richness seems to be the simplest, and most in-
tuitively satisfying, measure of diversity. Species richness can be defined
as the number of species of a given taxon in the chosen assemblage. Yet
such simplicity is illusory. There is considerable debate about which
species concept should be adopted. Most biologists adhere to Mayr’s
(1942 ) biological species concept (Coyne & Orr 1998; Futuyma 1998} but
alternatives, for example the phylogenetic species concept (Cracraft
1989} and the cohesion concept (Templeton 1989) are also used. Added to
this is the issue of species discrimination {Gaston 1996b). Taxonomists
are often classified as “lumpers” or “splitters.” The former approach has
the result of decreasing species richness, the latter of inflating it. Greater
investmentin taxonomy may alsoboost estimates as new species are de-
scribed and cryptic species distinguished —although the identification

1 After May (1990a).
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of synonymies, where two or more scientific names have been applied to
a single species, can actually reduce the total (Gaston & Mound 1993;
Gaston et al. 1995). Inevitably, some groups are much less well known
than others. Perhaps as many as 75 % of species remain to be formally de-
scribed (May 1990a). Morphotypes or morphospecies —taxa that are dis-
tinguishable on the basis of the morphology (Oliver & Beattie 1996a,
1996b)—provide a practical solution in circumstances where previously
unrecorded or unidentifiable organisms are encountered (see Hammond
1994 for a more detailed discussion of this point}. Morphospecies are
usually treated as equivalent to species in richness estimates. Clearly,
morphospecies will be more indispensable for some taxa than others:
Lawton et al. (1998) conducted an inventory of a semideciduous humid
forest in southern Cameroon in which over 90% of recorded soil nema-
todes —but no birds—had to be assigned to morphospecies. It is par-
ticularly important that morphospecies are classified and identified
consistently when comparisons between localities are being made as
inconsistencies can produce significant errors in richness estimates
(Hammond 1994).

Sampling brings further complications. Even when species can be un-
ambiguously identified it is rarely cost effective to record every species
in an assemblage. If larger areas are examined more species will be re-
vealed (Figure 3.1a). Estimates will increase as sites are explored more
thoroughly, or surveyed over longer periods so that diurnal and seasonal
activityrhythmsare accountedfor (Figure 3.1b). And, since assemblages,
includingisolated ones such as islands (Rose & Polis 2000), are not closed
systems, the cumulative list of species will creep ever upwards as new
colonists arrive (MacArthur & Wilson 1967; Holloway 1977; see also
Chapter 5). :

Effective sampling must also take heed of the underlying species abun-
dance distribution and greater effort will be required in situations where
evenness is low (Lande et al. 2000; Yoccoz et al. 2001). Imagine, for in-
stance, that there are two assemblages, each with the same number of
species and individuals, but whose species differ in their relative abun-
dances. In the assemblage where all species are more or less equally com-
mon, sampling will soon provide an accurate estimate of its richness. On
the other hand, samples taken from the assemblage where one species
dominates and the others are rare will tend to underestimate richness
(May 1975) (Figure 3.2). A further problem is detectability—not
all species or individuals are equally easy to sample (Southwood &
Henderson 2000} and this can be a potential source of error (Yoccoz et al.
2001). Methodological edge effects arise when the probability of species
capture is not directly related to species abundance (Longino et al. 2002).
With these caveats in mind this chapter considers methods of measuring
species richness and evaluates their effectiveness.
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Figure 3.1 (a) Spatial effects and species richness. The graph illustrates the relationship
between area surveyed and number of species recorded in a wet, old-growth forestin
Malaysia (Pasoh) and a moist, old-growth forest in central Panama. Datarelate to plants
with stems 210 mm dbh (from Condit et al. 1996). (b) Temporal effects and species
richness. The graph shows the number of bird species observed on the Isle of May (off
Scotland’s east coast) during 1985. Data are presented as the number of species per month,
and cumulative total number of species recorded over the year. The influx of spring and
autumn migrants in May and October, respectively, is clearly visible. (Data courtesy of
Fife Nature.)

Measures of species richness

In circumstances where the fauna or flora are well known and not too spe-
ciose it may be possible to record, with a fair degree of accuracy, absolute
species richness. In practice this usually means temperate and often
terrestrial or freshwater assemblages of vertebrates, such as North
American land mammals (Brown & Nicoletto 1991} and British fresh-
water fish {Maitland & Campbell 1992), or assemblages of higher plants,
forexample the vegetation of the Siskiyou Mountains in Oregon and Cal-
ifornia (Whittaker 1960). However, the real challenges in biodiversity as-
sessment concern poorly documented (usually invertebrate) taxa in
tropical or deep-sea assemblages. Here, high diversity combined with a
relatively poorly documentedbiotaand invariably limited funding, mean
that an estimate of species richness is usually the best that can be
achieved. Yetitis in these localities that the need for rapid, accurate, and
cost-effective biodiversity inventories is most pressing. Lawton et al.
(1998) estimated that up to 20% of the world’s 7,000 systematists would
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Figure 3.2 The effect of abundance distribution on richness estimation. Each assemblage
consists of five species and 50 individuals. In the even assemblage each of these five
species has 10 individuals; four of the species in the uneven assemblage are singletons
while the remaining one has 46 individuals. The graph shows the estimate of species
richness obtained by successively sampling (at random, and without replacement) an
individual from each assemblage. This estimate is averaged over 50 randomizations. True
speciesrichness (S=5) emerges much more quickly in the even assemblage than in the
uneven one.

be required to produce an all-taxa biological inventory of a single “repre-
sentative hectare” of forest in a reasonable time period. This calculation
wasbased on theirinvestigation of eight animal taxa in Cameroon where
the equivalent of five “scientist years” was needed to sample, sort, and
catalog the 2,000 species in the inventory. One consequence of the re-
newed interest in biological diversity in recent years is that ecologists
have placed considerable emphasis on improved methods of estimating
species richness. Fortunately, the news is good. Excellent progress has
been made and there are now anumber of robust and efficient estimators
available.

There are two main methods of expressing estimates of species rich-
ness—as numerical species richness, which is the number of species per
specified number of individuals or biomass, or species density, which is
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the number of species per specified collection area or unit. Species den-
sity, for example the number of species per metre squared, is especially
favored in botanical studies. The classic Park Grass Experiment, begun
at Rothamsted in England well overa century ago {Lawes & Gilbert 1880;
Laweset al. 1882; Tilman 1982}, typifies this approach. It continues to be
used today, for example in investigations of the relationship between di-
versity and function (Hector et al. 1999). Numerical species richness, on
.the other hand, lends itself to animal taxa where individuals are readily
identifiable and where the investigatorhas the option of continuing sam-
pling until a certain minimum number of individuals are reached. For
instance, micropaleontologists typically identify 300 individuals to
species (Buzas 1990; Hayek & Buzas 1997; see also Chapter 5).

Gotelli and Colwell (2001) make the parallel distinction between
individual-based assessment protocols, where individuals are sampled
sequentially, and sample-based assessment protocols, in which sampl-
ing units, such as quadrats, are identified, and all the individuals that
lie within them are enumerated. These sampling approaches have
important implications for richness estimation (Gotelli & Colwell
2001; Longino et al. 2002; see also discussion in Chapter 5). Incidence
(or occurrence) data offer a further method of deducing species richness.
Incidences represent the number of sampling units in which a species
is present. These sampling units can be grid squares, quadrats, pitfall
traps, zooplankton hauls, or indeed anything that is collected in a sys-
tematic way. In effect incidences are species density data in another
form.

A major problem with species richness estimates is their dependence
on sampling effort (Gaston 1996b) (Figure 3.3). Sampling effort is rarely
documented (Gaston 1996b). This presents a major problem to those
who try to deduce the absolute richness of a taxonomic group or geo-
graphic areasince the rate at which new species are recorded is an impor-
tant variable in such estimates (Simon 1983; May 1990a; and see below).
Lack of information on sampling effort also impedes the comparison of
the richness of different localities (Gaston 1996b). None the less, the
application of the new estimators —which encourage the user to expli-
citly state sampling methodology and size —may do much to remedy
the situation.

Species richness indices

There are several simple species richness indices- that attempt to
compensate for sampling effects by dividing richness, S, the number of
species recorded, by N, the total number of individuals in the sample.
Two of the best known of these are Margalef’s diversity index (Clifford &
Stephenson 1975) Dy
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Figure 3.3 Observed richness is related to sampling intensity. This graph shows the
relationship between the number of vascular plant species recorded and sampling effort,
in walk surveys and quadrat surveys carried out in a broadleaved woodland in April. Each
quadrat took approximately 45 min to complete. {Redrawn with kind permission of
Kluwer Academic Publishers from fig. 3.3, Magurran 1988; after Kirby et al. 1986.)
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and Menhinick’s index (Whittaker 1977) Dp:

S
DMn = ﬁ

Base of calculation is one great advantage of the Margalef and
Menhinick indices. For instance, in a sample of 23 species of birds, re-
presented by a total of 312 individuals, diversity would be estimated as
Dy, = 3.83 using Margalef’s index and D,,, = 1.20 using Menhinick’s
index. Convention dictates that the Margalef index is calculated using
S— 1 species and the Menhinick with S species.

Despite the attempt to correct for sample size, both measures remain
strongly influenced by sampling effort. None the less they are intuitive-
ly meaningful indices and can play a useful role in investigations of
biological diversity. The Margalef index is evaluated further in the fol-

lowing chapter.

Estimating species richness

As Colwell and Coddington (1994) and Chazdon et al. (1998) note, there
are three approaches to estimating species richness from samples. The
first of these depends on the extrapolation of species accumulation or
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Figure 3.4 Species accumulation curves of moths and birds in Fife, Scotland. Graphs are
based on species occurrence in 125, 5 x 5 ki grid squares. Average species richness (based
on 50 randomizations; see Colwell {2000)) is shown. The accumulation curve for birds —
an extremely well-recorded group —is beginning to reach an asymptote. In contrast, the
curve for moths, a much less intensively sampled taxon, shows no signs of leveling off.
{Data courtesy of Fife Nature.)

species—area curves. Alternatively, it is possible to use the shape of
the species abundance distribution to deduce total species richness. The
final, and potentially most powerful, approach is to use a nonparametric
estimator.

Species accumulation curves

When ecologists set out to determine the diversity of a locality they
almost always take a series of samples. These might be quadrats, plank-
ton hauls, light traps, or Malaise traps (Southwood & Henderson 2000).
The rate at which new species are added to the inventory provides im-
portant clues about the species richness, and indeed the species abun-
dance distribution, of the assemblage as a whole. Recently there hasbeen
renewed interest in species accumulation curves as a means of estimat-
ingspeciesrichness. Species accumulation curves, which are sometimes
called collectors curves, plot the cumulative number of species recorded
(S) as a function of sampling effort {n} (Colwell & Coddington 1994 (Fig-
ures 1.1 and 3.4). Effort can be the number of individuals collected, or a

T
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surrogate measure such as the cumulative number of samples or sam-
pling time {Colwell & Coddington 1994). Species—area curves, widely
used in botanical research (Arrhenius 1921; Goldsmith & Harrison
1976), are one form of species accumulation curves. It is important to
note that there are two different forms of species—area curve —those that
plot Sversus A for different areas (such asislands)and those that examine
increasingly larger parcels of the same region. Only the latter should be
regarded as species accumulation curves since these depict the same uni-
verse sampled at different intensities.

The order in which samples {or individuals) are included in a species
accumulation curve influences its overall shape. An especially speciose
sample will, for example, have a much greater influence on the shape of
the curve if it is encountered earlier rather than later in the sequence. A
smooth curve can be produced by randomizing the procedure. To achieve
this, samples (or individuals) are randomly added to the species accumu-
lation curve and this procedure is repeated, say 50 times (Figure 3.4). The
mean and standard deviation of species richness at each value of n can
also be calculated. Gotelli and Colwell {2001) note that such resampling
curves are closely related to rarefaction curves {Sanders 1968). Species
accumulation curves are viewed as moving from left to right, as new
species are added (Figure 3.5). They can be extrapolated to provide an es-
timate of the total richness of the assemblage. The following sections of
this chapter explain how this is done. Rarefaction curves, in contrast,
move from right to left. Here the goal is to deduce what the species rich-
ness of the assemblage would be if the sampling effort had been reduced
by a specified amount. The purpose of rarefaction is to make direct com-
parisons amongst communities on the basis of number of individuals
in the smallest sample. Rarefaction is discussed further in Chapter 5.
Gotelli and Colwell (2001} note that Pielou’s (1975) pooled quadrat
method, devised to provide improved estimates of diversity indices, is
analogous to the randomized (smoothed) species accumulation curve.
Many investigators plot species accumulation curves using a linear
scale on both axes. I have done this for the figures in this chapter.
However Longino et al. (2002) recommend that the x axis should be
log transformed since these semilog plots make it easier to distinguish
asymptotic curves from logarithmic curves.

Species accumulation curves illustrate the rate at which new
species are found. But unless sampling has been exhaustive, these
curves do not directly reveal total species richness. More effort will
uncover yet more species leading accumulation curves to creep ever
upwards. One solution, first identified by Holdridge et al. (1971) (see
Colwell & Coddington 1994] is to extrapolate from species accumula-
tion curves to estimate total species richness. There are now a number
of papers addressing the subject, though as yet no firm consensus on
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Figure 3.5 The distinction between species accumulation curves and rarefaction curves.
Species accumnulation curves are viewed as moving from left to right, rarefaction curves
from right to left. A rarefaction curve can be regarded as the statistical expectation of the
corresponding accumulation curve. Rarefaction curves represent the mean of repeated
resampling of all pooled individuals or samples and are used to compare the species
richmess of two or more assemblages at a common lower abundance level. Species
accumulation curves in contrast approach the total species richness of the assemblage.
Rarefaction curves and species accumulation curves constructed using data on
individuals typically lie above those based on sample data. This point is discussed further
in the text. (Redrawn with permission from Gotelli & Cowell 2001.)

thebestapproach (Palmer 1991; Baltanis 1992; Soberén & Llorente 1993;
Colwell & Coddington 1994; Chazdon et al. 1998; Keating & Quinn
1998).

Colwell and Coddington {1994, p. 106) argue that extrapolation be-
comes at least logically possible when a species accumulation curve rep-
resents a “uniform sampling process for a reasonably stable universe.”
This means, in effect, that samples should be taken in a systematic way,
as opposed to the ad hoc collecting sometimes practiced by those wish-
ing to maximize the number of new species recorded per unit time. Col-
well and Coddington {1994] also advise that such extrapolations should
be restricted to areas of reasonably homogenous habitat rather than
being based on wide-ranging species—area curves, especially those that
encompass large-scale biogeographic zones.

Functions used in this type of extrapolation may be either asymptotic
ornonasymptotic. In both cases theirmostuseful roleis to allow the user
to predict the increase in species richness for additional sampling effort
rather than to estimate total species richness per se.
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There are two main methods of generating an asymptotic curve. The
first, based on the negative exponential model, was used by Holdridge et
al. (1971) to compare the species richness of trees across climatic zones
in Costa Rica, as well as by Soberén and Llorente {1993} and Miller and
Wiegert {1989). The Michaelis—-Menten equation, originally devised to
model enzyme kinetics (Michaelis & Menten 1913} is the second. This
approach has been used extensively in species richness estimation (de
Caprariis et al. 1976; Clench 1979; Soberén & Llorente 1993; Colwell &
Coddington 1994; Denslow 1995; Chazdon et al. 1998; Keating & Quinn
1998). In a novel application of the approach, Paxton (1998} estimated
that 47 “sea monsters” (open-water marine fauna >2m total length]|
remained to be discovered.

Theusual form of the equation is:

S, 1
S = max
(n) B+n
where S(n)=the number of species observedin nsamples; S, =the total

number of speciesin the assemblage; and B=the sampling effort required
todetect 50% of S, ,

Avariety of methods can be used to estimate the fitted constants, S_, .,
and B, and their variances. Colwell and Coddington (1994) discuss the al-
ternatives, advocate Raaijmakers’ {1987) approach, and provide details of
the methodology. When used with their rain forest seed bank data, the
Michaelis~Menten approach underestimated species richness at small
sample sizes. A subsequent study (Chazdon et al. 1998} found that it had
a tendency to “blow up” early on, due to its sensitivity to sudden in-
creases in observed species richness as samples are accumulated (Figure
3.6). Silva and Coddington (1996) used the Michaelis-Menten model to
estimate the species richness of spiders at Pakitza in Peru and found that
although the fit to a species accumulation curve was good overall, the
number of species was underestimated for large numbers of samples, as
well as for small ones. This led them to express concern that (extrapolat-
ed) species richness estimates would be deflated.

Colwell and Coddington {1994) were concerned that the shape of the
species abundance distribution, which will be influenced by the taxon
and environment under study, might constrain the effectiveness of the
Michaelis—-Menten and other models. This prediction was confirmed by
Keating and Quinn (1998) who showed that the performance of the
Michaelis-Menten model did indeed vary with assemblage structure. In
their study they simulated assemblages whose species abundance distri-
butions followed either MacArthur’s broken stick model or Tokeshi’s
(1990, 1993) random fraction model (see Chapter 2 for further details).
Assemblages consisted of 10, 100, or 1,000 species. Estimates of S, and
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Figure 3.6 Performance of six richness estimators in relation toa knOW{vn universe — Fhe
freshwater fish of Trinidad and Tobago. In cach case the observed species accumu'lanon
curve [dotted line) is plotted alongside the estimated accumulation curve (solid line}.
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B for the two larger broken stick assemblages were unbiased but both pa-
rameters were overestimated in the small, 10-species assemblage. Even
larger, and highly significant, deviations were observed with the random
fraction model. S_;, was underestimated by between 7% and 37% (all
three assemblages, P < 0.001) and B by between 67% and 80% (assem-
blages of 100 and 1,000 species, P < 0.001). A similar level of underesti-
mation was observed when the method was applied to a natural
assemblage of vascular plants in Glacier National Park in Montana.
Keating and Quinn (1998) argue that the Michaelis-Menten approach is
thus of limited utility, especially since most assemblages would be bet-
ter described by the random fraction than the broken stick model. None
theless, Toti et al. {2000) concluded that it was the most useful estimator
in a study of a spider assemblage in the Great Smoky Mountains while
Chazdon et al. (1998) found that the model performed well in their in-
vestigation of woody regeneration in Costa Rica.

Irrespective of the method used, the estimates of the asymptote will be
improved if the order in which samples are accumulated is randomized
many times (Palmer 1991). Colwell and Coddington (1994) used 100
randomizations of sample order in their study and Chazdon et al. (1998)
recommend that the minimum number of randomizations required
needs to be assessed separately for each investigation.

Nonasymptotic curves can also be used to estimate species richness.
These curves are familiar territory for every ecologist versed in the na-
ture of species—arearelationships. Gleason (1922) proposed that the rela-
tionship between species and area was best described by a log linear
model, that is one in which the number of species increments increase
arithmetically as the area increases logarithmically. MacArthur and
Wilson (1967) advocated a log-log relationship, and recognized that area
(A] was a surrogate for N, the total number of individuals across all
species. (The assumption that this relationship between S and A is ulti-
mately underpinned by a log normal distribution can be used to explain
the range of “z” values typically observed in island biogeography (May
1975; Diamond & May 1981).) Palmer (1990) tested these models and
found that the log-log relationship substantially overestimated true
species richness. Although Palmer concluded that the log linear model
was more effective, Colwell and Coddington (1994] argue that nonpara-
metric methods (see below) are superior. Baltanas (1992), following Stout
and Vandermeer (1975), imposed an asymptote on the log-log species—
area curve to avoid the extremely high estimates of species richness
generated when the curve is extrapolated to larger areas. However, al-
though this method offered an improvement on the previous approach
the results were not encouraging and the log-log model’s performance
was strongly affected by patchiness and overall species richness. Fur-
thermore, it was less effective than two other methods applied to the
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same data set: a parametric one based on the log normal distribution and
the nonparametric first-order jackknife (Heltshe & Forrestor 1983).
These methods are described in the next section.

Parametric methods

If the shape of a species abundance distribution can be satisfactorily
‘described, it is theoretically possible to estimate overall species
richness, or at the very least, the increase in S expected for an additional
sampling of N. This approach is intuitively appealing. After all, once
" the parameters of a distribution have been established the rest ought
to be straightforward. Unfortunately, problems in fitting distributions,
'and issues such as the veil line (Chapter 2), seriously hamper the
endeavor.

The two species abundance models with the greatest potential in
this context are the log series and log normal distributions {Colwell &
Coddington 1994). Of these the log series distribution is the easiest to
fit and the simplest to apply. However, since the log series distribution
always predicts that the largest class will be the one represented by a
single individual {Chapter 2), the estimate of species richness is nonas-
ymptotic, that is, it will rise as the number of individuals sampled
increases. None the less, Colwell and Coddington {1994) point out that it
is possible to accurately predict the number of new species that will be
encountered if the sample is increased. They also suggest that if the
total number of individuals in a target area can be estimated, a good esti-
mate of total species richness is possible. Hayek and Buzas (1997) de-
scribe the method and call the procedure “abundification.” It begins by
noting that a log series distribution of individuals amongst species as-
sumes the following relationship between S (total number of species), N
(total number of individuals), and o {the log series diversity index):

S=oln(l+N/a)

(seep.30).

We can use this equation to calculate the number of species that a
community would be expected to have for any specified number of indi-
viduals. ais calculated using the observed number of species (S) and the
observed number of individuals (N) and is then used to deduce the num-
ber of species that would be found for a larger N. To do this the new high-
ervalue of Nis substituted in the equation. The method works best if the
data conform to a log series distribution; S will be underestimated where

- they do not. This approach can also be used during rarefaction (Chapter
5). Rarefaction asks how many species would be found if sampling effort
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{usually number of individuals) is reduced to a specified level. This per-
mits comparisons amongst communities where samphng effort has
been unequal.

The log normal distribution opens a much larger can of ecological
worms. Few natural distributions are perfectly symmetric, beinginstead
truncated or logleft-skewed (Chapter 2). If the mode of the distribution is
evident it is at least possible to fit the distribution, but, as was apparent
in Chapter 2, there is no consensus on how best to do this. Most people
adopt the pragmatic approach of fitting a continuous log normal (see, for
example, Worked example 2; Silva & Coddington 1996), although, strict-
ly speaking, this is inappropriate since the observed data are in a discrete
form (Pielou 1975; Colwell & Coddington 1994). Choosing the abun-
dance classes is also problematic because the estimated parameters, and
overall species richness, will vary depending upon whether log,, log,,, or
another log base is used. Knowing what to do with singletons is another
challenge (Colwell & Coddington 1994). Following Pielou (1975}, 1
(Magurran 1988) set the class boundaries at x + 0.5 because this insures
that abundance data, which are integer values (at least in the case where
abundance is measured as numbers of individuals), can be unambigu-
ously assigned to classes. Ludwig and Reynolds (1988), by contrast, di-
vide singletons between the first two classes, and doubletons between
the second and third: As Coddington et al. {1991} note, this procedure has
the effect of creating a mode in the second or third class and thus giving
the appearance of a log normal distribution, even where one might not
genuinely exist. Once again, the choice of class boundaries will influ-
ence the estimate of the mean and variance of the distribution as well as
of total speciesrichness. A final concern, and perhaps the most serious of
all, is that there is still no method of generating a confidence interval
on any estimate of species richness achieved via a continuous log
normal distribution (Pielou 1975; Coddington et al. 1991; Colwell &
Coddington 1994; Silva & Coddington 1996). The alternative, and more
appropriate, Poisson log normal (Bulmer 1974) is harder to fit and
thus rarely utilized. Colwell and Coddington (1994) noted that the
Poisson log normal produced the highest estimates of spec1es richness
of any of the methods they tested.

Despite these caveats a number of investigators have used the log nor-
mal to estimate the species richness of an assemblage. Coddington et al.
{1996), for example, wished to know the species richness of spiders in an
Appalachian cove hardwood forest. A total of 89 species were observed
across all samples. The Poisson log normal gave by far the highest esti-
mate of richness at 182 species: Unfortunately, large confidence inter-
vals (£126) rendered the estimate almost meaningless. The continuous
log normal produced an estimate of 114 species, the second lowest after
the Michaelis-Menten. Although this seems a plausible figure, the ab-
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sence of a variance measure seriously limitedits usefulness. Coddington
et al. (1996) encountered problems when fitting the continuous (trun-
cated) log normal distribution to their data. Other measures, such as the
Chao and jackknife estimators (see below) performed more effectively
and presented fewer computational challenges although it appeared that
species richness was underestimated. And while the abundance distri-
bution of Costa Rican ants surveyed by Longino et al. (2002) was clearly
log normal, other estimates of richness estimation were more effective.
One problem with nonparametric estimators such as the Chao and jack-
knife ones is that they are sensitive to sample size. If the assemblage is
undersampled then its diversity will be underestimated. In theory, the
log normal approach ought to avoid this problem, so long as it is possible
to achieve a reasonably accurate estimate of the parameters. In practice,
of course, it does not. Silva and Coddington (1996) observed that it is
necessary to continue collecting common species in order to generate
sufficient classes for a goodness of fit test. This is especially onerous
and inefficient when tropical communities are under investigation.
Slocomb and Dickson {1978) concluded that sample size needs to be
large (N > 1,000) and to include >80% of species in the community
before accurate estimates of species richness can be achieved by this
approach. '

Baltanas (1992) simulated log normally distributed communities that
varied in richness, evenness, density, and aggregation. He then sampled
these communities, estimated their richness, and concluded that
his “Cohen” estimator [based on the parameters of the log normal dis-
tribution; see Chapter 2) performed better than the jackknife. It seems
unlikely that this conclusion will hold for communities whose distribu-
tion deviates from the lognormal distribution, oreven for ones that fitit,
but where the parameters cannot be accurately estimated.

Nonparametric estimators

There are, however, different —and more effective —means to the same
end. Colwell and Coddington (1994) observe that the problem of esti-
mating the number of unsampled cases is one that statisticians have
been working on, in a variety of contexts, over many years. It is not only
ecologists who need to predict the size of their universe; archeologists,
epidemiologists, and even astronomers face parallel challenges (Bunge &
Fitzpatrick 1993). In ecology, estimates of population size based on
mark-recapture are subject to many of the same biases as their species
richness counterparts. Colwell and Coddington (1994} and Chazdon et
al. (1998) consider a number of nonparametric methods for the estima-
tion of species richness, including some that have been adapted from
mark-recapture analyses. These are termed nonparametric methods be-
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cause they are not based on the parameter of a species abundance model
that has previously been fitted to the data (see above), though, of course

asinvirtually every other branch of diversity measurement, their perfori
mance depends on the underlying distribution. Many of the methods
were devised by Anne Chao and her colleagues. They are both elegant
and efficient and offer probably the most significant advance in diversity
measurement in more than a decade. The measures are intuitively easy
to understand and to use, even for a field ecologist with limited compu-
tational facilites. Their accessibility is further increased by Robert
Colwell’s {2001} EstimateS program.? This program was used to generate
the examples that follow, and it is strongly recommended to anyone
who wishes to estimate species richness in ecological assemblages.

The first method is Chao’s (1984) simple estimator of the absolute
number of species in an assemblage. It is based on the number of rare
species in a sample. Colwell and Coddington (1994) call this measure
Chao 1. The notation follows Chazdon et al. (1998):

S Fp
Chao 1 — Sobs +F
2

where S, = the number of species in the sample; F, = the number of ob-
served speciesrepresented by asingle individual (singletons); and F, =the
number of observed species represented by two individuals ( doubleztons).
gggox)fariance of the estimate may also be calculated (Chao 1987; Colwell

The estimate of species richness produced by Chao 1 is a function of
the ratio of singletons and doubletons and will exceed observed species
.nchness by ever greater margins as the relative frequency of singletons
increases. No further increase in the estimate is achieved once every
species is represented by at least two individuals and at this point {one
that is rarely reached during sampling) the inventory can be considered
complete (Coddington et al. 1996). An obvious disadvantage of the Chao
1 method is that it requires abundance data (at least to the extent of
knowing which species are singletons or doubletons) rather than
presence/absence —often called incidence or occurrence —data. Colwell
and Coddington (1994), however, note that, following the suggestion of
Anne Chao, the same approach can be modified for use with presence/ab-
sence data by taking account of the distribution of species amongst sam-
Plgs. In this caseitisnecessary only to know the number of species found
in just one sample and the number of species found in exactly two. They
term this variant of the method Chao 2:

2 http //VICEI’OY eeb.uconn. edu/EstlmateS Th €S O e \% a
. . B . e EstimateS online user’s d
guide pro ides more details
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Qt
SCha() 2= Sobs + 2Q2

where, Q, = the number of species that occur in one sample only {unique
species); and Q, = the number of species that occur in two samples.

Colwell and Coddington {1994] also reviewed another category of
estimators devised by Chao and Lee (1992), termed coverage estimators.
This first generation of coverage estimators consistently overesti-
mated species richness, especially at small sample sizes (Colwell &
Coddington 1994). Chao and her collaborators have now developed new
coverage estimators (Chao et al. 1993; Lee & Chao 1994) that appear to
offer great potential (Chazdon et al. 1998). Coverage estimators are based
on the recognition that species that are widespread or abundant are like-
ly to be included in any sample and thus contain very little information
about the overall size of the assemblage (Chao et al. 2000). In contrast it
is the rare species that are most useful in deducing overall richness. The
abundance-based coverage estimator, known as ACE, is based on the
abundances of species with between one and 10 individuals. This cut-off
was selected on the basis of empirical data (Chao et al. 1993). The esti-
mate is completed by adding on the number of abundant species, that is
those represented by >10 individuals. The partner incidence-based cov-
erage estimator, ICE, focuses on species found in <10 sampling units. A
related technique can be used to estimate the true number of species that
two communities have in common (Chapter 6).

Following Chazdon et al. (1998), the abundance-based coverage
estimate (ACE) is:

S F
Sack = Sipung + 2+ —1—v2
ACE abund CACE CACE ACE
where S, . = the number of rare species (<10 individuals); S,;,,.4 = the

rare

number of abundant species (>10 individuals); N, . =the total number of
individuals in rare species; F, = the number of species with 7 individuals

(F, =the number of singletons); C,y=1-F,/N,, ; and

§ i(i-1)F,

S =1
Tare i= _ 1’0
CACE (Nrarc )(Nr.;rc B 1)

2 R
Yacg —Max

Yice estimates the coefficient of variation of the F/s.
The incidence-based coverage estimate (ICE)is:

T

e
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S'mfr + Ql 2
C C YicE |
ICE ICE

SICE = Sfreq +

where S . = the number of infrequent species (found in <10 samples);
Steq = the number of common species (found in >10 samples); m, ;. =the
number of samples with at least one infrequent species; N, = the total
number of occurrences of infrequent species; Q,=the number of species
thz:it occur in j samples {Q, = the number of uniques); Cicg=1-Q,/N,y;
an

It is essential to remember that Chao’s estimators provide minimum
estimates of richness and that they assume homogeneity amongst
samples {Chao, in press). For this reason it is inappropriate to attempt
to estimate richness across sites where there are large compositional dif-
ferences, for example along ecological gradients or mosaics.

Other species richness estimators were also initially developed to
fulfil different functions. Burnham and Overton (1 978, 1979} used jack-
knife statistics to estimate population size during mark-recapture.
These methods were subsequently applied, with some success, to
species richness estimation. They are called Jackknife 1, a first-order
jackknife estimator that employs the number of species that occur only
inasingle sample (Burnham & Overton 1978, 1979; Heltshe & Forrestor
1983}, and Jackknife 2, a second-order estimator, which, like the Chao 2
equation, takes both the number of species found in one sample only (Q,)
and in precisely two samples (Q,) into account (Smith & van Belle 1984).
Both require incidence data. In the following equations m is the number
of samples:

m-1

Slack 1= Sobs +Q1( m J

Q,(2m-3) _Q,(m- Z)ZJ

S =S+
Jack 2 obs !: m m(m _ 1)

The variances of both estimators can be calculated. See Heltshe and
Forrestor {1983 for details of the variance of Jackknife 1 and Burnham
and Overton (1978) for Jackknife 2.
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Finally, itis possible to apply the bootstrap estimator derived by Smith
and van Belle (1984). It too requires only incidence data. Burnham and
Overton (1978) explain how to estimate the variance.

Snbs

Sl:«:vt = Sobs + ?.: (1 - pk)m
=1

Figures 3.6 and 3.7 examine the performance of a range of nonparame-
tric estimators and the Michaelis-Menten estimator in relation to two
assemblages. The first assemblage is the freshwater fish of Trinidad and
Tobago (Figure 3.6), which were the focus of an intensive survey (Phillip
1998; Magurran & Phillip 2001a, 2001b) where every drainage system
was examined. A total of 114 samples were taken and both species rich-
ness and abundance (number of individuals) data were collected. It is
likely that the true species richness of the fauna is close to 40 (Kenny
1995; Phillip & Ramnarine 2001). All of the measures tested, with the ex-
ception of Chao 2, produced results broadly consistent with this expec-
tation. Interestingly, the Michaelis—-Menten and ICE measures produced
stable and broadly accurate estimates at small numbers of samples.
Howeyver, it is also apparent that the Chao 1 and ACE estimators do not
tell us anything that S, does not. A comparison of Chao 1 with Chao 2
and ACE with ICE reveals that the fish samples are heterogenous. This
pattern arises because there are many more uniques than Singletons and
it is why Chao 1 and ACE fail (R. K. Colwell, personal communication;
Chazdon et al. 1998).

Whatis the outcome when the size of the universe is unknown? Figure
3.7 uses occurrence data on beetle species in 125 5 x 5 km grid squares in
Fife, Scotland. A total of 612 species have been recorded but this is likely
to be a considerable underestimate. Only two of the measures tested —
the Chao 2 and the ICE—produce estimates that are no longer incre-
menting when all the samples have been accumulated, although the
Jackknife 2 and Michaelis-Menten graphs also show some signs of level-
ing off. What is intriguing is that these four approaches generate esti-
mates that are not only markedly larger than the observed richness, but
that are also broadly similar (Chao 2 = 1,137, Jackknife 2 = 1,239,
Michaelis—-Menten = 1,197, ICE = 1,295). How many beetle species are
likely to occur in Fife? We know that the land area of Fife is 1,305 km?.
(This apparent discrepancy in size arises because Fife is bounded on three
sides by the sea and many of the grid squares in the above analysis were
coastal ones.) This means that Fife covers approximately 0.5% of the
total land area of mainland Britain {224,424 km?). Chinery (1973} gives
the number of recorded beetle species in Britain as >4,000. If we assume
that area and species form a log-logrelationship in which the slope, z, is
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Figure 3.7 Performance of richness estimators in relation to an unknown universe —
beetle species in Fife, Scotland. The observed species accumulation curve is shown as
adotted line and the estimated one as a solid line. There were 125, 5 x 5km samples.
Occurrence data are used. See text for further details. Note that the y axis is scaled to
accommodate the estimated curve; in all cases the observed curve is identical. {(Data
courtesy of Fife Nature.)

0.25, the number of beetle species in Fife will be in the order 20% of the
British total —in other words at least 800 species. (Reducing z t0<0.21, in
line with values more typically associated with mainland species-area
curves (Diamond & May 1981; Rosenzweig 1995), will have the effect of
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increasing this estimate.) The results provided by the estimators are
plausible. ,

To date there have been relatively few comparative tests of these mea-
sures though it is already clear that they represent a powerful tool for
ecologists. Colwell and Coddington (1994) tested the performance of
these approaches (excluding ACE and ICE, which did not exist then).
Their measure of success was the ability of the various estimators to
predict the total species richness of a Costa Rican seed bank. Two of the
estimators, Chao 2 and Jackknife 2, performed particularly well and pro-
duced remarkably accurate predictions of species richness from small
numbers of samples. Walther and Martin (2001) used data from bird as-
semblages in Canada’s Queen Charlotte Islands to test seven nonpara-
metric and 12 accumulation curve methods. They concluded that the
Chao estimators (followed by the jackknife estimators) were the least bi-
ased and most precise. Palmer {1990, 1991) (who could not examine the
Chao estimators as they were not then available to him) found that the
jackknife approach produced better estimates than bootstrapping.
Poulin (1998) showed that both the Chao and jackknife methods were
imprecise, relative to bootstrapping, if the assemblage contained many
rare species. Condit et al. (1996) also observed that both the Chao gnd
jackknife estimators substantially underestimated the true speciesrich-
ness of woody plants in fully censused 50ha plots in three tropical
forests. However, since Condit et al.’s study usedlocal samples to deduce
the richness of a heterogenous universe an underestimate was probably
inevitable. In their neotropical spider study, Silva and Coddington (1996)
observed that Chao 1 and Chao 2 provided higher, and likely more realis-
tic, estimates in cases of undersampling, than the jackknife method, but
concluded that since the jackknife was a conservative estimator agree-
ment between it and other estimators might signify a robust result. A
similar ranking of measures occurred in an investigation of a temperate
spider community in which Coddington et al. (1996) found the Chao 1
and Chao 2 estimates exceeded the jackknifed one.

Chazdon et al. (1998) recognized that estimators must be evaluated
using a range of criteria. They identified sample size, patchiness, and
overall abundance li.e., total number of individuals in the sample) as
being important and assessed the performance of the nonparametric es-
timators (as well as the Michaelis-Menten model) using data collected
during a census of woody regeneration (seedlings and saplings) in prima-
ry and secondary forest in Costa Rica. The Michaelis—Menten estimator
emerged as being most stable across all sample sizes, whereas Chao 2,
ICE, and Jackknife 2 increased steadily with samplesize. Patchiness® had

3 Colwell’s EstimateS program contains an option for simulating patchiness.
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an important influence on the outcome. Chazdon et al. {1998) found that
the rate at which new species were encountered with increasing sample
size was reduced as the distribution of species changed from being ran-
dom to being progressively more patchy. The Chao 1 and ACE measures
were especially sensitive to patchiness, and were effective only in cases
where species were randomly distributed. On the other hand, the Chao 2
and ICE estimators performed well at moderate levels of patchiness,
though not at high ones. This contrast is rooted in the differences be-
tween the abundance and incidence measures. When species are distri-
buted randomly the number of singletons and uniques are identical, as
are the number of doubletons and duplicates for the same set of samples.
However, as patchiness increases, progressively more species are de-
tected in one sample only. The Michaelis-Menten measure increased
with degree of patchiness and the jackknife and bootstrap estimators be-
came more dependent on sample size as patchiness intensified. Total
abundance of individuals also had an effect. In the three primary forests
in the study, abundance (N) was highly correlated with species richness
and Chazdon et al. (1998) were concerned that this relationship might
obscure genuine richness differences between sites. Although none of
the estimators completely satisfied all criteria in terms of their particu-
lar data set they concluded that the ICE was most promising while the
Chao 2 estimator also performed well at small sample sizes. The Jack-
knife 2 and Michaelis-Menten were also viewed as useful estimators and
together these four were identified as worthy of further exploration.
Most tests of estimator performance involve either small, well-
inventoried assemblages or large, but incompletely, studied areas of un-
known richness. An important contribution has been provided by Longi-
no et al. {2002) who conducted an intensive investigation of ant species
in Costa Rica’s La Selva Biological Station. This 1,500ha site is excep-
tionally well studied and is known to contain at least 437 resident ant
species. Eight different categories of sampling method were employed,
and nearly 2,000 samples collected. These samples contained just under
8,000 species occurrences. Three richness estimators —the area under
the log normal curve, the Michacelis-Menten method, and ICE —were
evaluated in the context of a smoothed species accumulation curve.
None of the methods produced a stable asymptote though they all tend-
ed to converge on observed species richness at large sample size. How-
ever, the Michaelis-Menten and ICE estimators outperformed the log
normal-derived estimates on almost all occasions. Longino et al. (2002)
conclude that rarity is one factor that causes estimators to fail. Impor-
tantly, the authors point out that levels of rarity are exaggerated (in sur-
veys of insect assemblages) when a single sampling technique is
employed. This issue is revisited in Chapter 5. Moreover, Longino and
his colleagues stress the need for the continued evaluation of estimators.



94 Chapter 3

Sampling considerations and stopping rules

Asthepreceding examples have illustrated, the performance of nonpara-
metric estimators is often assessed in relation to an empirical species

-accumulation curve. Unless the assemblage has been sampled exhaus-
tively, this curve will underestimate species richness to an unknown de-
gree. Collectors vary in their efficiencies (Coddington et al. 1991) and
sampling is usually more challenging in some habitats and weather con-
ditions than in others. Organisms, especially mobile ones, can be ardu-
ous to sample at certain times of day, or may show seasonal variation in
abundance.

This uncertainty leads to a classic “catch 22" situation. An investiga-
tor needs to be relatively confident that the sample is big enough to pro-
vide an accurate estimate of the size of the assemblage without knowing
in advance how large the assemblage actually is. This means that empir-
ical “stopping rules” are invaluable. A “stopping rule,” as the name
implies, is an indication of the point beyond which further sampling

‘isno longer necessary or at which it is too costly.

“The asymptotic nature of the Michaelis-Menten estimator means
that it has potential application as a stopping rule. One rule of thumb is
to continue sampling until the empirical species accumulation curve
crosses the one generated by the Michaelis-Menten model and then to
use anonparametric method (discussed above) to estimate total richness
{P. A. Henderson & A. E. Magurran, unpublished study).* Another sug-
gestion is provided by Colwell and Coddington (1994). They note that a
census can be treated as complete if all species have an abundance of two
or greater (if relative abundance data are being collected) or if they all
occur in at least two samples (when occurrence data are used). This
method is sound but may be unduly onerous when there are many sin-

- gletons (Chapter 2).

A useful check is to subdivide the total sample into two parts (at ran-
dom) and estimate the richness of these separately. If they give answers
that are consistent with the one obtained for the combined sample
the investigator can be confident that ample data have already been
collected. Krebs (1999) provides general advice on the use of stopping
rules in ecology and the next two chapters address the issue of sample
size in diversity measurement in more detail.

Estimators that are unstable or still rising when all samples have been
included do not provide a reliable estimate of species richness. However,
Longino et al. (2002) note that in such circumstances Chao estimators
can be used to derive a valid minimum estimate of richness.

4 This method is included in Species Diversity and Richness (http://www.irchouse.demon.co.uk/).
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Overview of estimators

What then, in summary, do we, as ecologists, require from such richness
estimators? Since time and money are almost always in short supply we
need to accurately predict the total species richness of an assemblage,
using as small a sample size as possible. Indeed a key attribute of estima-
tors is independence from sample size above some minimum size of
sample (Longino et al. 2002). Ideally, we should be able to independently
check the accuracy of the estimate. Stopping rules need to be tested and
refined. The measure should be robust against slight variations in sam-
pling protocol. An estimate of variance should be possible, and the confi-
dencelimits should not be sowide as to render the estimate meaningless.
The estimators should not be biased by variation in the underlying
species abundance distribution. They should also be computationally
efficient, though this requirement becomes ever less important as
computers improve and packages such as EstimateS become available.

In view of their performance and relative simplicity, richness estima-
tors hold great promise for the future. By adopting both species accumu-
lation curves and jackknife or Chao methods it is possible to obtain not
only a meaningful “picture” of the species diversity of the assemblage,
but alsoa good estimate of its total richness. A related question, estimat-
ing the number of shared species in two assemblages (Chao et al. 2000), is
explored in Chapter 6.

Other considerations

Lande et al. {2000) have reported a potential weakness in species accu-
mulation curves. They note that estimates of species are unreliable
when species richness curves intersect, as they will do if one assemblage
has more species overall but lower Simpson diversity (equivalent to re-
duced evenness) {Figure 3.8). Such an effect could arise as a consequence
of disturbance, which, at an intermediate level, may increase both the
richness of an assemblage, and the variance of the species abundance dis-
tribution (i.e., lower evenness) (Connell 1978). (High levels of distur-
bance tend to further amplify the variance in species abundances but
may ultimately reduce richness.) Investigations that set out to contrast
disturbed sites with their pristine equivalents may thus be especially
prone to this shortcoming.

Lande et al. (2000) illustrate the problem with reference to two
neotropical rain forest butterfly communities, one of which they classi-
fy as “intact,” and the other as “disturbed.” At small or even moderate
sample sizes the observed species abundance curves are less effective
than a random guess at ranking the assemblages accurately. It is only at
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Figure 3.8 Expected species accumulation curves in two lowland Amazonian butterfly
assemblages. The curve with the initial lower slope and higher asymptote represents a
disturbed assemblage, the other curve an intact one. Expected accumulation curves were
derived from fitted log normal distributions of species abundance. (Redrawn with
permission from Lande et al. 2000; further details are provided in their paper.)

points above the intersection of the curves that the probability of rank-
ing the communities in the correct manner exceeds 50%. By contrast,
the Simpson index correctly ranks communities at a sample size over 20
times smaller (81 individuals as opposed to 1,801 individuals). Of course
the Simpson index has the drawback of requiring abundance data, but
this disadvantage could well be traded off against the requirement of a
smaller sample size. It is also worth noting that Lande et al. (2000) fitted
a log normal to empirical data and then used the parameters of that
(perfect) log normal to demonstrate that the unbiased estimator of the
Simpson index is independent of sample size (because the estimator does
not include NJ. The Simpson index calculated directly from empirical
data sets, including those that are not log normal, may produce less sat-
isfying results. Furthermore, as May (1975) points out, Simpson’s index
will increase with S, once $ > 10, if the data follow a log normal distribu-
tion (but not if they are described by the log series). The underlying
species abundance distribution thus affects even this method.

As Lande et al. [2000) recognize, the difficulty with species accumula-
tion curves, and extrapolations based thereon, is that in order tojudge the

e
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validity of the estimates they generate one needs either an independent
evaluation of overall species richness or a knowledge of the under-
lying species abundance distribution. The user must be sensitive to their
shortcomings and alert to the possibility of intersecting accumulation
curves. Lande et al. (2000) offer the wise advice that ecologists and
conservationists should employ a measure of Simpson diversity as well
as species richness when comparing communities. At the very least,
and in the absence of abundance data, users of species richness measures
ought to be vigilant for marked discontinuities in evenness amongst
assemblages.

The problems encountered when comparing the diversity of
communities, along with some solutions, are discussed further in
Chapter 5.

Surrogates of species

It is not always possible to sample intensively enough to produce even a
rough estimate of species number. Ecologists have therefore searched for
other means of identifying areas with high species richness and of rank-
ing sites along a rich—poor axis, often for conservation purposes. There
are three main types of surrogacy: cross-taxon, where high species rich-
ness in one taxon is used to infer high richness in others {Mortiz et al.
2001); within-taxon, where generic or familial richness is treated as a
surrogate of species richness (Balmford et al. 1996}; and environmental,
where parameters such as temperature or topograpical diversity are as-
sumed to track species richness. Gaston (1996b) provides an overview.
Surrogacy approaches are becoming increasingly popular and can in
some instances successfully map richness gradients. For example,
macrolichens emerged as a good indicator of the species richness of
mosses, liverworts, woody plants, and ants in the Indian Garwhal
Himalaya (Negi & Gadgil 2002), while certain higher-taxon clusters, for
instance families of British butterflies and Australian birds (Williams &
Gaston 1994) proved efficient predictors of species richness. Lee (1997)
reports that family- and genus-level diversities are very good indicators
of underlying species diversities. The increasing use of remote sensing
holds open the promise of rapid biodiversity assessment {Gould 2000),
but the complex nature of the relationship between environmental
variation and biological diversity means that interpretation can be
difficult. One simple and widely used application is to deduce species
number from the area of particular habitat types, mostly famously
Amazonian rain forest (see, for example, Brown & Albrecht 2001)
although edge effects and other variables must be taken into account
(Laurance et al. 2002.).
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There are some obvious disadvantages to surrogacy methods. Each
taxon and system must be dealt with on a case by case basis. The fact that
macrolichen diversity predicts ant diversity in the Indian Himalayaisno
guarantee that it will be a good predictor elsewhere and the distribution
of species amongst higher taxa can change from place to place (Gaston
1996b). Moreover, since these approaches do not measure species rich-
ness but simply identify sites where it may be high, the outputs are not
directly comparable with those obtained using conventional estimates
and measures. By the same token, sites where species richness has been
measured using surrogate or direct methods cannot be ranked on the
same axis.

How many species are there on earth?

The intellectual goal of deducing how many species there are on earth
has received recent impetus in the light of the growing concerns about
global speciesloss. Inthe paper that gaveitsname to the title of this chap-
ter, May (1990) set out a variety of approaches for estimating the species
richness of the planet. Many of these focus on insects, the taxon that con-
tributes disproportionately to life on earth. These methods, which fall
outside the scope of this book, are described in May (1988, 1990a, 1992,
1994b, 1999), Grassle and Maciolek {1992}, Poore and Wilson (1993}, and
Hammond (1994). In summary, a variety of approaches, including pro-
jecting the rate at which new species are recorded (May 1990a), elucidat-
ing the relationship between body size and taxon richness, particularly
for small organisms (Finlay 2002), and scaling up from the number of
insect species per tree to reach a global total (Novotny et al. 2002), typi-
cally produce figures in the 5-10 million species range. This contrasts
with the <2 million species that have been formally recorded. However,
the confidence limits around the projected species totals remain high
and a much deeper understanding of key habitats and species groups,
such as tropical insect faunas and deep-sea macrobenthos, is urgently
needed. Since the extent of global diversity is often inferred from the
richness levels at local scales, methods for estimating species richness
through extrapolation (described in this chapter) can help answer the
question: “How many species are there on earth?” (May 1988). This
point is revisited in the concluding chapter.

Summary

1 Speciesrichnessis often treated as the iconic measure of biological di-
versity, though itis by no means the only measure of biological diversity.
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Its appealing simplicity masks a number of problems. Of these, the
dependence of richness estimates on sampling intensity is the most
onerous. v

2 A number of nonparametric estimators, notably those developed by
Anne Chao and her colleagues and popularized by Robert Colwell and
his colleagues, provide a promising method of deducing total species
richness usingtractable sample sizes. They represent one of the most im-
portant advances in diversity measurement in recent years.

3 These approaches are evaluated in relation to methods based on
the extrapolation of species accumulation curves and species abundance
distributions.

4 While more tests are needed, especially in species-rich assemblages,
richness estimators are an effective means of producing a valid mini-
mum estimate of richness.

5 When species accumulation curves intersect ranking of assemblages
is problematic. In such circumstances Lande and his colleagues recom-
mend the use of the Simpson index since this consistently ranks assem-
blages (though it also necessitates the collection of abundance data).
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Chapter 2 revealed how species abundance distributions can be used to
describe the structure of communities and shed light on the ecological
processes that underlie that structure. Chapter 3 reviewed methods of
estimating species richness. Despite the recent progress on both these
fronts thereisstill aperceivedneed for “indices” of diversity that capture
both the richness and evenness characteristics of an assemblage. As
there are endless ways of emphasizing different aspects of the species
abundance relationship, the number of candidate diversity indices is
infinite (Molinari 1996). However, because all measures must empha-
size one or other component of diversity (richness or evenness), no per-
fectly unified diversity index is possible.” None the less, as the literature
testifies, the challenge of devising ever better measures has been taken
up by many ecologists over the years. As a result, there are a plethora of
indices from which to choose and this diversity of diversity measures
can make it difficult to select the best approach. The matter is compli-
cated by the fact that the most popular indices are not necessarily the
best.

My aim in this chapter is to provide a user’s guide to diversity mea-
sures. It is not intended to be an exhaustive list. Instead, T review
methods that are in common use as well as ones, that are, in my opinion,
particularly effective. I describe potential applications, compare the per-
formance of key measures with other competing methods, and highlight

1 After McIntosh (1967).

2 Clarke and Warwich [2001a} note that if many different diversity measures are calculated for a single
set of samples and the outcome is ordinated using principal components analysis, the first two axes -
which represent richness and evenness - will account for most of the variation.

-
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Box 4.1 Howto choose a diversity index

1 Itis very tempting to calculate a range of
diversity measures, especially if one is using a
package that will do this automatically. This
temptation must be resisted! It is important to
know in advance which aspect of biodiversity
is being investigated — and why —since this
will have implications for the sampling
design, etc., and not simply to choose the
measure that provides the most attractive
answer.

2 Sample size must be adequate to meet the
objectives of the investigation. Advice on how
to achieve this is given'in the next chapter.

3 Replication is strongly recommended. All
other things being equal it is almost always
better to have many small samples rather
than asingle large one. Replication means
that statistical analysis is possible and allows
confidence limits to be constructed. Repeated
sampling is also the key to species richness
estimation (Chapter 3) and means that
jackknifing and bootstrapping (Chapter 5) are
feasible.

4 Consider whether a “heterogeneity”
measure is really necessary. Since biological
diversity is so often equated with species
richness, a demonstrably robust estimate of
the number of species may be the most useful
outcome (Chapter 3).

5 If a heterogeneity measure is justified,
consider using either ¢ or Simpson’s index.
The performance of both is well understood
and they are intuitively meaningful. ctis
relatively unaffected by sample size once

N>1,000. There is no need to confirm that
species abundances follow a log series
distribution. Simpson'’s index provides a good
estimate of diversity at relatively small
sample sizes and will rank assemblages
consistently, even when species
accumulation curves intersect. Confidence
limits can be attached to both measures
(Chapter 5).

6 Despite its popularity, use of the Shannon

" index needs much stronger justification.

Given its sensitivity to sample size there
appear to be few reasons for choosing it over
species richness. Interpretation can also be
difficult. Opting forexp H’ (or Hill's N,
measure; Chapter 5) does not overcome the
fundamental problems associated with this
measure. However, the Shannon index seems
likely to persist, since many long-term
investigations have chosen it as their
benchmark measure of biological diversity.

7 The Berger—Parker index provides a simple
and easily interpretable measure of
dominance.

8 Likewise, there are advantages in using the
Simpson evenness measure, particularly if the
Simpson index has been used to describe
diversity. Smith and Wilson (1996) provide
sound advice if other evenness measures are
sought (see also above).

9 Taxonomic distinctness measures are
informative and easily interpretable and have
the added advantage of being robust against
variation in sampling effort.

potential advantages or limitations. Worked examples are provided to
assist the user. Box 4.1 gives advice on how to select an appropriate
measure.

Since even the most elegant methodology cannot redeem an ill-
conceived investigation, the single most important consideration in
the measurement of diversity is that the user has a clear idea of the objec-
tives of the study. Is it intended to estimate the species richness of
potential nature reserves? Is a measure of pollution stress required?
Does the user need to assess the effects of disturbance? Are confidence
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limits on the diversity estimate essential? Once the objectives have been
clearly delineated it is relatively straightforward to select a diversity
measure. Sampling must also be adequate for the purposes of the study
{Chapter 5). '

Diversity measures

As noted in Chapter 1, diversity statistics are conventionally clas-
sified as either species richness measures {McIntosh 1967) or hetero-
geneity measures (Good 1953). Heterogeneity measures are those that
combine the richness and evenness components of diversity.® Evenness
measures were later developed (by Lloyd and Ghelardi (1964) and subse-
quent workers) in an attempt to distil the evenness component of diver-
sity into a single number. Evenness measures assess the departure of
the observed pattern from the expected pattern in a hypothetical assem-
blage. This assemblage may either be completely uniform (all species
equally abundant) or represent some biologically achievable pattern of
evenness (such as the broken stick distribution; see Lloyd and Ghelardi
[{1964)).

Species richness measures and estimators were dealt with in Chapter
3. Heterogeneity (and evenness) measures, the focus of this chapter, fall
into two categories—either a parameter of a species abundance model,
for example log series ¢, or a measure, such as Simpson’s diversity index
D (Simpson 1949), that makes no assumption about the underlying
species abundance distribution. For this reason such measures are some-
times described as nonparametric diversity indices. This does not mean,
however, that they are necessarily robust against shifts in the pattern of
species abundances.

“Parametric’ measures of diversity

Log series o

The diversity index o is a parameter of the log series model. Its cal-
culation is a necessary prelude to fitting the distribution {Chapter 2.
However, when S (the number of species) and N (the total number of
individuals) are known, o may be read directly from Williams’s (1964)
nomograph (duplicated in Southwood and Henderson (2000)) or from the

3 Following Hurlbert {1971), many ecologists adopted the practice of restricting the term “diversity”
to heterogeneity measures, that is those that combine richness and evenness. This convention appears
to have weakened 1n the last decade, as popular interest in biological diversity, which is often treated as
synonymous with species richness, has heightened.

——
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tablein Hayek and Buzas (1997, appendix 4). A series of studies {Kempton
& Taylor 1974, 1976; Taylor 1978) investigating the properties of o have
come out strongly in favor of its use, even when the log series distribu-
tion is not the best descriptor of the underlying species abundance pat-
tern. Hayek and Buzas (1997) concur with this, as long as x> 0.5 (in other
wordsif theratio N/S>1.44)and aslongas $> o. In fact xis almost always
>0.9 (and often close to 1; see Figure 2.10 and the first equation on p. 30)
and S > o in natural assemblages. Recall that the first term of the log se-
ries, which predicts the number of species, is ox. Thus, ais approximate-
ly equal to the number of species represented by a single individual.
Moreover, as Chapter 2 showed, it is possible to attach confidence limits
to o. acis relatively unaffected by variation in sample size, and complete-
ly independent of it if N> 1,000 (Taylor 1978).

Log normal A

Itmight be expected that the standard deviation (5) of a lognormal distri-
bution would be a good measure of diversity. Although o can be used
as an evenness measure it is a poor index for discriminating amongst
samples and cannot be estimated accurately when sample size is small
(Kempton & Taylor 1974). Nor is $* a good predictor of total species
richness (Chapters 2 and 3). Unexpectedly, however, the ratio of these
parameters (S* /o) turns out to be an effective diversity measure ( A). A dis-
criminates assemblages well (Taylor 1978). Tts ranking of sites (from high
to low diversity) tends to accord well with o (Figure 4.1 ).

The Q statistic

The Q statistic, proposed by Kempton and Taylor 1976, 1978) is an in-
teresting and innovative approach to diversity measurement. This mea-
sure is based on the distribution of species abundances but does not
require the user to fit amodel to the empirical data. Instead, acumulative
species abundance curve (of the empirical data)is constructed and the in-
terquartile slope of this curve is used to measure diversity (Figure 4.2).In
theory, as in an earlier index suggested by Whittaker (1972), the whole
curve could be used to describe diversity, but the practice of restricting
the measure to the interquartile region means that neither very abun-
dant, nor very rare, species bias the outcome.
The following equation is estimated from empirical data:

1 R,
o Rt 2 1, * 5 k2
Q= R;+1
In(R, /R))
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Figure 4.1 (a) Values of the log series index o and the lognormal index A tend to be
strongly correlated. In this example depicting moth trap samples from an Irish woodland,
r=0.98. [b) Relationship between the Q statistic and the log series index o for the same
dataset(r=0.92). Theline Q= isalsoshown.

4
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Figure 4.2 Illustration of the Q statistic. The x axis shows species abundance of a fish
assemblage caught in Sulaibikhat Bay, Kuwait on alogarithmic (log,,} scale while the
cumnulative number of species is displayed on the y axis. R,, the lower quartile, is the
species abundance at the point at which the cumulative number of species reaches 25%
of the total. Likewise R,, the upper quartile, marks the point at which 75% of the
cumulative number of species is found. The Q statistic measures the slope Q between
these quartile. (Data from table 1, Wright 1988.)

where n, = the total number of species with abundance R; R, and R, = the
25% and 75% quartiles; n,, =the number of species in the class where R
falls; and nnp, = the number of species in the class where R, falls.

The quartiles are chosen so that:

R-1 1 R,-1 3

R R
an<—SSz1 and an<—Ssi
1 49 T 49

where S = the total number of species in the sample; although the place-
ment of R, and R, is not critical as the interquartile region of a cumula-
tive species abundance curve, or indeed a rank/abundance plot, tends to
be linear. In the case of a rank/abundance plot the slope 1/Q is used (see
Worked example 6).

Kempton and Wedderburn (1978) point out that Q, expressed in terms
of the log series model, is analogous to «. For the log normal model Q =
0.371 §*/o (= 0.371A). The congruence between these three diversity
measures is clearly illustrated in Figure 4.1. Thus, while Q isnot formal-
ly a parametric index its performance is similar to those that are.

100,C
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* Although Q may be biased in small samples, this bias is low if >50% of
the species in the community have been censused (Kempton & Taylor
1978). Despite its simplicity and ease of interpretation the Q statistic has
not been widely adopted by ecologists. Pettersson {1996}, however, used
it when comparing the diversity of spiders in lichen-rich, natural spruce
Picea abies forests in northern Sweden with selectively logged, lichen-
poor forests. Spider diversity was found to be higher in the unlogged
forests. (Interestingly, rarefaction plots—see Chapter 5-—also used by
Pettersson (1996) indicated no differences between the sites apart from a
lower abundance of spiders on branches in lichen-poor forests.) Ghazoul
(2002)also adopted the measure to track shifts in butterfly diversity inre-
lation to disturbance level in a tropical dry forest in Thailand. An even-
ness measure, conceptually similar to the Q statistic, has been proposed
by Nee et al. (1992) (see below).

"Nonparametric” measures of diversity

Most diversity measures are not explicitly associated with named
species abundance models even though their performance is often gov-
erned by the underlying distribution of species abundances. The next
section investigates a number of these so-called “nonparametric” mea-
sures of diversity and assesses their utility.

Information statistics

One of the most enduring of all diversity measures is the Shannon index.
Such endurance is all the more remarkable in light of the fact that most
commentators who discuss the relative merits of the various methods of
measuring diversity go out of their way to underline the disadvantages of
the Shannon index (May 1975; Magurran 1988; Lande 1996; Southwood
& Henderson 2000). Inertia, however, has insured that this measure will
not go quietly. Many people feel happier about adopting a measure with a
long tradition of use, even if it has not stood the test of time. Its origins in
information theory and its association with concepts such as entropy
likely also contribute to its continuing appeal (Martin & Rey 2000).
Shannon and Wiener independently derived the function that is now
generally known as the Shannon index or Shannon information index,
though sometimes mistakenly referred to as the Shannon-Weaver index
(Krebs 1999)—a misunderstanding that arose because the original for-
mula was published in a book by Shannon and Weaver (1949). The index
is based on the rationale that the diversity, or information, in a natural
system can be measured in a similar way to the information contained in
a code or a message. It assumes that individuals are randomly sampled
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from an infinitely large community {Pielou 1975, and that all species are
represented in the sample. The Shannon index is calculated from the
equation:

H'=—2lenpf

The quantity p, is the proportion of individuals found in the ith species.
Worked example 7 illustrates the calculations. In a sample the true value
of p;is unknown butis estimated using its maximum likelihood estima-
tor, n,/N (Pielou 1969). Since the use of n,/N to estimate p; produces a
biased result, the index should, strictly speaking, be obtained from the
following series (Hutcheson 1970; Bowman et al. 1971):

H'=-) p;Inp, S 1+1 2pi! 2( ' -p;2)+

12N? 12N3

In practice, however, this error is rarely significant (Peet 1974) and all the
terms in the series after the second are very small indeed. A more sub-
stantial source of error arises when the sample does not include all the
species in the community (Peet 1974). This error increases as the propor-
tion of species represented in the sample declines. As the true species
richness of an assemblage is usually unknown for all the reasons dis-
cussed in Chapter 3, an unbiased estimator of the Shannon index does
not exist (Lande 1996).

For historical reasons log, is often used when calculatmg the Shannon
diversity index. There are no pressing biological reasons why this tradi-
tion should be preserved. Indeed it is computationally simpler, and eco-
logically just as valid, to use natural logs (log,, also known as In) or even
log,,in the equation. There is an increasing trend towards standardizing
on natural logs (see, for examiple, Cronin & Raymo 1997) and it is essen-
tial to use these in the series (shown above). What is important is to be
consistent in the choice of base when comparing diversity between sam-
ples or studies or when using the Shannon index to estimate evenness
(see the equation on p. 108).

Pielou {1969) lists the terms used to describe the units in Wthh the
Shannon index measures diversity. These stem from information theory
and depend on the type of logarithms used. “Binary digits” or “bits”
apply when log, is adopted, “natural bels” or “nats” when it is log,, and
“decimal digits” or “decits” for log,,. These terms are rarely applied
these days, a sensible trend since they do not assist in the interpretation
of estimates of diversity. However, references to bits and nats do crop up
from time to time in the older literature. '

The value of the Shannon index obtained from empirical data usually
fallsbetween 1.5 and 3.5 and rarely surpasses 4 (Margalef 1972). It is only
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when there are huge numbers of species in the sample that high values
are produced. May (1975)notes that, given alognormal pattern of species
abundance, 10° species would be needed to produce a value of H' > 5.0.

The fact that the Shannon index is so narrowly constrained in most cir-
cumstances can make interpretation difficult. The ecologist confronted
by values of H' =2.35 and H’ =2.47 may have little idea whether the two
sites in question have similar diversities or are substantially different. (A
similar criticism can be directed towards the log seriesindex o..) Some in-
vestigators sidestep the problem by using e” instead of H”. e’ is an intu-
itively meaningful measure as it gives the number of species that would
have been found in the sample had all species been equally common
(Whittaker 1972). Thus, H” = 2.35 becomes e” = 10.49 and H' = 2.47
becomes e = 11.82. Kaiser et al. (2000) used this approach when
examining the effects of chronic fishing disturbance on marine benthic
communities. Transforming the index has the useful function of spread-
ing the values out, but it still does not shed much light on whether esti-
mates of diversity are significantly different or not. e” is equivalent to
Hill’s N, diversity index (Chapter 5).

A better approach, assuming that there is an a priori hypothesis why
one assemblage should be more or less diverse than another, is to em-
ploy a statistical test. In the past one of the only options was to use
Hutcheson’s (1970) “t” test for the Shannon index. Hutcheson (1970) sets
out the method for calculating the variances of the two estimates, the
value of t and the degrees of freedom used to assess significance. How-
ever, Taylor (1978) pointed out that when the Shannon index is calculat-
ed for a number of sites, the indices themselves will be normally
distributed. This property makes it possible to use parametric statistics,
including powerful analysis of variance methods (Sokal & Rohlf 1995), to
compare sites for which diversity has been calculated (see, for example,
Kaiser et al. 2000). Recently, attention has switched to resampling pro-
cedures such as bootstrap and jackknife methods (Lande 1996). This ap-
proach, which has much to recommend it, is discussed in Chapter 5.

The Shannon evenness measure

As a heterogeneity measure the Shannon index takes into account the
degree of evenness in species abundances. None the less, it is possible to
calculate a separate evenness measure. The maximum diversity (H_, )
that could possibly occur would be found in a situation where all species
had equal abundances, in other words it H'=H_, =In S. The ratio of ob-
served diversity to maximum diversity can therefore be used to measure
evenness (J'] (Pielou 1969, 1975): '

J'=H/H_, =H/InS
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Beisel and Moreteau (1997) provide a simple method of calculating H_.

min/

avalue used in other forms of the Shannon evenness (see Hurlbert 1971 ).

Heip’s index of evenness

Heip (1974) felt that evenness measures should not be dependent on
speciesrichness(which Pielou’s J'is, up to approximately S=25 (Smith &
Wilson 1996)) and that they should have a low value in contexts where
evenness is obviously low. His proposed measured was intended to meet
these criteria:

o (e -1)
Heip (5—1)

Although Eeip 18 less sensitive to species richness than J, it does not
meet the requirement of being independent of sample size when there
are fewer than about 10 species in the sample (Smith & Wilson 1 996). It
does, on the other hand, satisfy the expectation of attaining a low value
when evenness is low (see Table 4.1, p. 120). Smith and Wilson (1996)
showed that the minimum value of Heip’s measure is 0 and that it regis-
ters 0.006 when an extremely uneven community {with species abun-
dances 1,497,1,1, 1)isused.

SHE analysi's

One of the problems with the Shannon index is that it confounds two as-
pects of diversity: species richness and evenness. This is often viewed as
a disadvantage since it can make interpretation difficult; an increase in
the index may arise either as a result of greater richness, or greater even-
ness, or indeed both. However, Buzas and Hayek | 1996) and Hayek and
Buzas (1997) realized that this characteristic of the Shannon index can
actually be turned to an advantage. Their reasoning is as follows. They
first note that one measure of evenness is E = ef/S (Heip 1974; see also
discussion above) and then go on to observe that the Shannon index is
simply the sum of the natural log of this value (In(E)) and the natural log
of species richness (In(S)). (This assumes that natural logs have been used
in the calculations.) It follows that the index can be decomposed into its
two components:

H=InS+InE

The most obvious advantage of this decomposition is that it allows the
user to interpret changes in diversity. Thus, an ecologist can attribute a
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decrease in the diversity of a community following a pollution incident
to aloss of richness or evenness, or a combination of these. SHE analysis
can also shed light on the underlying species abundance distribution.
The essence of SHE analysis is the relationship between S (species rich-
ness), H (diversity as measured by the Shannon index), and E (evenness).
The manner in which this relationship changes as a function of sample
'size can be remarkably informative. Like the estimation of species rich-
ness, this approach makesuse of accumulated samples. Hayek and Buzas
(1997) point out that when a sample of large and small N are compared,
five scenarios are possible. Two of these are unlikely to prevail in natural
communities but the remaining three are indicative of specific species
abundance distributions.

1 §,=S8,, H,=H,, E,=E,;identical richness, evenness, and relative abun-
dance of species irrespective of sample size.

2 §,=8,, H,#H,, E,#E,; speciesrichness remains constant but evenness
changes.

3 §,#8,,H,=H,, E, #E,; Hremains constant because changesin S and E
offset one another.

4 S, #S, H #H,, E, = E,; E remains constant but S, and therefore H,
changes.

5 8,#S,, H,#H,, E, #E,; H changes because differences in S and E do not
offset one another.

Scenarios 1 and 2 are implausible in nature partly because increased
sampling almost always uncovers additional species; Hayek and Buzas
(1997) explain why. However, scenario 3 indicates a log series distribu-
tion, scenario 4 a broken stick, and scenario 5 a log normal one. This
means that a graphic method (SHE analysis) can potentially be used to
distinguish the three patterns (though further exploration is required to
rule out the possibility that other distributions could generate similar
outcomes). Hayek and Buzas (1997) provide an example of this (Figure
4.3). I tested the approach using ground flora data collected for an Irish
woodland. If the data are displayed in the form of a conventional species
abundance plot a log normal distribution is revealed (Figure 4.4a); SHE
analysis (Figure 4.4b) also indicates that the data are log normal in char-
acter. In this instance SHE analysis proved to be an effective method of
deducing the underlying species abundance distribution, thus removing
the need to formally fit the models and perform goodness of fit tests.
However, although it is a promising method, SHE analysis needs wider
testing across a range of taxa and communities. What, for example, will
happen when truncated or left-skewed log normal distributions are ob-
served? Itsbehaviorinrelation to abundance distributions other than the
three discussed here also needs examination. Moreover, as Chapter 2
illustrated, distinguishing statistical models is not always an easy task.
Interpreting the results of a SHE analysis could therefore be tricky.
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Figure 4.3 SHE analysis plots showing expected patterns for {a) broken stick, {b}log
normal, and (c) log series distributions in relation to increasing N. Both In(E)/In(S) and
In(E) are multiplied by 10. In the broken stick both S and H’ are expected to increase and E
to stay constant. The log normal is associated with an increase in S and H” but a declinein
E. With the log series S will increase, H’ will remain constant, and E will decrease.
(Redrawn with permission from Havek & Buzas 1997.)
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Figure 4.4 (a) The distribution of abundance of ground vegetation in an Irish'woodland
{Roe Valley, Co. Derry) is log normal. (b) SHE analysis correctly identifies this pattern.
The two SHE graphs, which follow the format of Figure 4.3, plotIn(S), H, ln(E.)/]n(S) and
In{E) in relation to N. The values of S, H’, and E are based on one or 50 randomlzgtlons of
50 pdint quadrats; a "hit” by the pin of a quadrat represents N=1. Both S and H' increase
inrelation to N, while, as predicted, E declines. These graphs also illustrate the
consequences of multiple randomizations of data: the right panel, based on 50
randomizations, generates a smoother pattern than the left panel, which is based on one

randomization.

Arita and Figueroa (1999) used SHE to examine geographic patterns of
body mass diversity in Mexican mammals. They substituted the num-
ber of body mass categories for S and calculated p; as the proportion of
species per category rather than the usual proportion of indiw./iduals per
species. The authors concluded that evenness (of the distribution of body
mass values) was high at intermediate spatial scales but low at.the re-
gional one. This is a novel application of the SHE approach, but sinceno
other evenness measures were considered it is unclear whetheritis more
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informative than the alternatives. Buzas and Hayek (1998) describe how
SHE can be used to identify communities (of Foraminiferain their exam-
ple)along a gradient.

The Brillouin index

When the randomness of a sample cannot be guaranteed, for example
during light trapping where different species of insect are differentially
attracted to the stimulus {Southwood & Henderson 2000), or if the com-
munity is completely censused and every individual accounted for, the
Brillouin index (HB), is the appropriate form of the information index
(Pielou 1969, 1975). It is calculated as follows:

B lnN!—Zlnni!
B N

HB

and again rarely exceeds 4.5. Both the Shannon and Brillouin indices give
similar and often correlated estimates of diversity. However, when the
two indices are used to measure the diversity of a particular data set,
the Brillouin index will always produce the lower value. This is because
the Brillouin index describes a known collection about which there isno
uncertainty. The Shannon index, by contrast, must estimate the diversi-
ty of the unsampled as well as the sampled portion of the community.
Evenness (E) for the Brillouin diversity index is obtained from:

E=HB/HB_,,
where HB___ is calculated as:

N!

{v/siy™ (/)0

where [N/S]=the integer of N/S; andr= N- S [N/S).

Animportant difference between the two measures of diversity is that
the Shannon index will always provide the same answer so long as the
number of species, and their proportional abundances, are held constant.
Thus, if one site has 10 species each with five individuals and another
site has 10species each with 10 individuals, the Shannon index would re-
turn a value of 2.30 in both cases. The value of the Brillouin index, by
contrast, wouldbe 2.01 in the site with 50 individuals and 2.13 in the site
with 100 individuals.

Since the Brillouin index measures the diversity of a collection, as op-
posed to a sample, each value of HB will, by definition, be different from

HB_ =

max L In
N
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every other. This means that the index has no variance and that no sta-
tistical tests are needed to demonstrate significant differences. It is, of
course, possible to use the jackknife or bootstrap procedure to generate a
mean estimate along with an associated variance but whether such fig-
ures have any real meaning is open to debate. Laxton {1978) concludes
that the Brillouin index is, mathematically speaking, the superior of the
two information measures of diversity. Pielou (1969, 1975 strongly ad-
vocates its use in all circumstances where a collection is made, or sam-
ples are nonrandom, or where the full composition of the community
is known. In practice, however, few ecologists take this advice as the
Brillouin index is more time consuming to calculate, and less familiar,
than the Shannon index. Its dependence on sample size can also some-
times lead to unexpected results, though admittedly only when thereis a
highly unusual species abundance distribution or when N {number of in-
dividuals)is low. The index cannot be used when abundance is measured
as biomass or productivity {Legendre & Legendre 1983; Krebs 1999). The
Brillouin index seems to suffer from many of the disadvantages of infor-
mation statistics and offer few of the benefits. Notwithstanding this, it
continues to be used often (Lo et al. 1998; Dans et al. 1999; Ito & Imai
2000), but not invariably (Andres & Witman 1995; Bartsch et al. 1998), to
describe parasite assemblages.

Dominance and evenness measures

The information statistics described above tend to emphasize the
species richness component of diversity. Another group of diversity in-
dices are weighted by abundances of the commonest species and are
usually referred to as either dominance or evenness measures (domi-
nance and evenness being, of course, opposite sides of the same coin).
One of the best known, and earliest, dominance measures is the Simpson
index. It is occasionally called the Yule index since it resembles the mea-
sture G. U. Yule devised to characterize the vocabulary used by different
authors (Southwood & Henderson 2000).

Simpson’s index (D)

Simpson (1949) gave the probability of any two individuals drawn at ran-
dom from an infinitely large community belonging to the same species
as:

D=Y p?

where p,=the proportion of individualsin theithspecies. The form of the
index appropriate for a finite community is:
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where n,=the number of individuals in the ith species; and N = the total
number of individuals. Worked example 7 provides details.

As D increases, diversity decreases. Simpson’s index is therefore
usually expressed as 1 — D or 1/D. Simpsons’s index is heavily weighted
towards the most abundant species in the sample, while being less sensi-
tive to species richness. May (1975) has shown that once the number
of species exceeds 10, the underlying species abundance distribution is
importantindetermining whether theindexhasahigh orlow value. Con-
fidence limits can be applied by jackknifing (Chapter 5).

The Simpson index is one of the most meaningful and robust diversity
measures available. In essence it captures the variance of the species
abundance distribution. Thus, when expressed as the complement (1 —
Dj or reciprocal (1/D) of D, the value of the measure will rise as the as-
semblage becomes more even. Although the reciprocal (1/D)is the most
widely used form of the Simpson index, Rosenzweig (1995) notes that it
can have severe variance problems, and recommends instead —In(D), a
transformation introduced by Pielou (1975) following the advice of C. D.
Kemp. Rosenzweig (1995) advises that Kemp’s transformation is easily
interpretable, that it will reflect underlying diversity, and thatitis inde-
pendent of sample size. Lande (1996) observes that the overall diversity
of a set of communities, measured as 1/D, may be less than the average
diversity of those communities—a conceptually intriguing notion —and
recommends 1 —D.

Asnoted in the previous chapter, Lande et al. (2000) find the Simpson
index more effective than species accumulation curves in ranking com-
munities. May (1975) approves of the measure because it is intuitively
meaningful. Its utility has been illustrated in a range of contexts: see, for
example, It6 (1997), Azuma et al. (1997), and Gimaret-Carpentier et al.
{1998). Clarke and Warwick’s (1998) index of taxonomic distinctness
(discussed on p. 123) is a natural extension of Simpson’s index. Lande
(1996) demonstrates how the index can be partitioned to give a measure
of diversity among, as well as within, assemblages, and describes how
analysis of variance can be used to accurately estimate the total diversi-
ty in aregion. Despite these plaudits, Simpson’s index remains inexplic-
ably less popular than the Shannon index.

Simpson’s measure of evenness

Although Simpson’s diversity measure emphasizes the dominance, as
opposed to the richness, component of diversity, it is not strictly speak-
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ing a pure evenness measure. A separate measure of evenness can,lhow—
ever, be calculated by dividing the reciprocal form of tbe Simpson index
by the number of species in the sample (Smith & Wilson 1996; Krebs

1999):

(/D)

El/D = S

The measure ranges from 0 to 1 andis not sensitive to speciesrichness. It
is usually termed E, p, to denote the use of the reciprocal formdof the
index. Smith and Wilson {1996) note that E; p, is formally related to its

parent index:
(1/ D) =Ep- S

Bulla {1994) asserted that any good evenness .il’ldf.:X becomes a he.:tf.:ro-
geneity measure if multiplied by S (but see Mohngrl ( 199.6) fora criticism
of this comment). The Simpson evenness index is relatlve.ly unusugl in
that this multiplication restores the standard measure of Simpson dlverc-1
sity (Smith & Wilson 1996). The Shannon index can also be decon(qposed
in the same way and it was this property that Buzas and Hay§3k ( 19)6).an

Hayek and Buzas (1997} exploited in their SHE analysis {described

above).

Meclntosh’s measure of diversity

Mclntosh (1967) proposed that a community can be'envisaged as a point
in an S-dimensional hypervolume and that the Euclidean dlgtange of the
assemblage from its origin could be used as a measure of diversity. The
distance is known as U and is calculated as:

”U:\fiz?

The McIntosh U index is not formally a dominance index. However, a
measure of diversity (D) or dominance that is independent of N can also

be calculated:

po N-U
" N-JN

And a further evenness measure can be obtained from the formula
(Pielou 1975):
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s N-U
N-N/+s

The Berger—Parker index (d)

The Berger—Parker index, d, is an intuitively simple dominance meas-
ure (Berger & Parker 1970; May 1975). It also has the virtue of being ex-
tremely easy to calculate. The Berger—Parker index expresses the
proportional abundance of the most abundant species:

d=N,_ /N

max /

“where N_,, = the number of individuals in the most abundant species.

Conceptually d can be regarded as equivalent to geometric series k since
both measures describe the relative importance of the most dominant
species in the assemblage. As with the Simpson index, the reciprocal
form of the Berger-Parker index may be adopted so thatan increase in the
value of the index accompanies an increase in diversity and a reduction
in dominance. The simplicity and biological significance of the index
leads May (1975) to conclude that it is one of the most satisfactory diver-
sity measures available. In large assemblages (S > 100), d is independent
of S, but in smaller ones its value will tend to decline with increasing
speciesrichness (Figure 4.5). (See Worked example 7 for further details. |
With the exception of Heip’s index these evenness and dominance
measures were described in the first incarnation of this book (Magurran
1988). Several new measures have been introduced since it was written.

Nee, Harvey, and Cotgreave’s evenness measure

Nee et al. (1992) proposed the slope (b) of a rank/abundance plot (in
which the abundances had been log transformed)—see also Wilson
(1991)—as an evenness measure.

The resulting measure:

Enuc=0b

falls between — and 0, where 0 is perfect evenness. This range of values
makes the measure difficult to interpret. There are other problems with
the measure as well: it is more properly a measure of diversity than of
evenness and rather similar to Kempton and Taylor’s (1976) Q statistic
(Smith & Wilson 1996). Smith and Wilson {1996) therefore proposed a
new form of the measure:

E, =-2/marctan(p’)
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Figure 4.5 Therelationship between the Berger-Parker index (d) and species richness (S)
for freshwater fish assemblages in Trinidad. The dashed line indicates the value that d
would take for a given number of species if all species were equally abundant (that is
perfect evenness). Since d represents the proportional abundance of the most abundgnt
species, lower values of d represent higher diversity. See text for details. (Redrawn with
permission from Magurran & Phillip 2001b. ]

In this measure the ranks are scaled before the regression s fitted. Thisis
achieved by dividing all ranks by the maximum rank so that the most
abundant species takes a rank of 1.0 and the least abundant a rank of 1/8.
The transformation (-2/r arctan) places the measure in the 0 (no even-
ness) to 1 (perfect evenness) range.

Carmargo’s evenness index

Carmargo (1993) also introduced an evenness measure:

n :1_[272[1?;5177:‘}
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where E. = Carmargo’s index of evenness; p, = the proportion of species i
in the sample; p; = the proportion of species j in the sample; and § = the
number of species in the sample.

Although the index is simple to calculate and relatively unaffected by
rare species (Krebs 1989), Mouillot and Lepetre (1999) found it to be
biased, especially in comparison with the Simpson index.

Smith and Wilson’s evenness index

Smith and Wilson (1996) proposed a new index designed to provide an in-
tuitive measure of evenness. This index measures the variance in species
abundances, and divides this variance over log abundance to give propor-
tional differences and to make the index independent of the units of
measurement. Thus it does not matter, for example, whether biomass
is measured in grams or kilograms, though, of course, different values
will still ensue if abundance is measured in different ways (such as num-
ber of individuals versus biomass). The conversion by —2/x arctan in-
sures that the resulting measure falls between 0 {[minimum evenness)
and I (maximum evenness). Smith and Wilson called their measure E_, .

2

/

E, =1- ( 3
T arctanlz[lnni . Zh'm]./S] /S
j=1

i=1

where n,=the number of individuals in species 1; n;= the number of indi-
viduals in species j; and S =the total number of species.

Smith and Wilson’s consumer’s guide to evenness measures

It canbe difficult to know which evenness index is best in which context.
Smith and Wilson {1996) conducted an extensive set of evaluations of
available measures using a range of criteria. These included four require-

ments (essential attributes) and 10-desirable features of measures. Their
requirements were as follow:

1 The measureisindependent of species richness.

2 The measure will decrease if the abundance of the least abundant
species isreduced.

3 The measure will decrease if a very rare species is added to the
community.
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4 The measure is unaffécted by the units used to measure it.
‘The additional 10 features were as follow:

1 The maximum value of the index is achieved when abundances are
equal.

2 The maximum value is 1.0.

3" The minimum value is achieved when abundances are as unequal as
possible.

4 The index shows a value close to its minimum when evenness is as
low as is likely to occur in a natural community.

5 The minimum valueis 0.

6 The minimum is attainable with any number of species.

7 Theindex returns an intermediate value for communities that would
beintuitively considered of intermediate evenness.

8 The measure should respond in an intuitive way to changes in
€VENnness.

9 The measure is symmetric with regard to rare and common species,
thatis as much weightis given to minor species as to very abundant ones.
10 Askeweddistribution of abundances shouldresultin alower value of
‘the index.

Their results are summarized {for the measures described in this chap-
ter)in Table 4.1. Smith and Wilson found that different indices often pro-
duced strikingly different results. For example, when asked to assess the
evenness of a community in which the species abundances were 1,000,
1,000, 1,000, 1,000, 1,000, and 1 the measures produced values ranging
from 0.046 to 0.999 {on a O to 1 scale). However, some measures did
emerge as being significantly better than their competitors. Indepen-
dence from species richness was Smith and Wilson’s {1996) primary cri-

Table 4.1 A summary of Smith and Wilson'’s (1996 evaluation of evenness measures.

Requirements Features
Index 1 2 3 4 1 2 3 4 5 6 7 8 9 10
J Ol v | v v |V N I A VA e X v X v
Epeio OVWv | ViV IV |V iV |V iV /O V X v
;E \ID Al I I A AN VAN e X Vv O | v | X v
’7EMCI X 28 IR0 I AN VA BV IV A X v X v
Ec R I A VA BN VAN 4 X S 1O | v 0O | KX 4
Ev:m 2N B2 AN BEVAN BN VA IS I BVAN ERVA BTN IVAN Ve O
Exhc X vV i v vV | vV O | Vv O | X v 1O |10 |V O
Ey 2R 2N IAN B AN B VAR IRV BVA IS VA e X v v

v =good; O=poor; X=fail.
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terion. This was satisfied by E 1D (the Simpson evenness measure), a
measure that also responded in an intuitive way to changes in evenness
(feature 8 above, named by Smith and Wilson {1996} as the Molinari test
after Molinari {1989})). Carmargo’s index, E- (Smith & Wilson 1996), the
new index E_,, and their modification of Nee et al.’s (1992) index, E,
also met the species richness criterion and demonstrated other desirable
properties. Smith and Wilson (1996} concluded with the following
recommendations.
1 When symmetry between rare and abundant species (feature 9 above)
is required (that is, where rare and abundant species should be weighted
equally with regard to their influence on the evenness measure) select:
(a) E,pif minimum evenness should be 0, or a good response to an
intuitive gradient in evenness is essential; or
(b) Ecifintermediate values for intermediate levels of evenness are
sought.
2 When symmetry between rare and abundant species is not required
(that is, where common species receive a higher weighting than rare
ones), select:
(a] E, if a good response to the intuitive evenness gradient is not
required; or
(b] E,,, ifitis.
Overall, Smith and Wilson (1996) rate E_,. as the most satisfactory
evenness measure. It will be interesting to see if it is widely adopted in
the future. On the other hand the sound performance of Simpson’s
Eyjp and its unambiguous relationship with its parent heterogeneity
index—which is itself an excellent measure of diversity —are important
recommendations.

Taxonomic diversity

If two assemblages have identical numbers of species and equivalent pat-
terns of species abundance, but differ in the diversity of taxa to which the
species belong, it seems intuitively appropriate that the most taxonomi-
cally varied assemblage is the more diverse (Figure 4.6). Moreover, mea-
sures of taxonomic diversity can be used in conjunction with species
richness andrarity scores in the context of conservation (Virolainen et al.
(1998} provide an example). The quest for measures that incorporate phy-
logenetic information can be traced back to Pielou (1975), who pointed
out that diversity will be higher in a community in which species are di-
vided amongst many genera as opposed to one where the majority of
species belong to the same genus. The approach has gained impetus in
the last decade as a consequence of their perceived role in setting con-
servation priorities (Vane-Wright et al. 1991; Williams et al. 1991;
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Figure 4.6 Taxonomic distinctness {A*]is based on the average pairwise path lengths
between specics in an assemblage [sce text for details). In this example (based on
presence/absence data and ignoring specics abundances) A* values are: (a) 3.0; (b) 1.0; .(c)
1.56; and [d) 1.2. The four hypothetical assemblages are therefore ranked in an intuitive
way. In other words, the greater the distribution of species amongst higher taxa, the
greater the value of the index. (Redrawn with permission from Clarke & Warwick 1998.)

Vane-Wright 1996; Williams 1996). A further potential application in
environmental monitoring has also been addressed (Warwick & Clarke
1995, Clarke & Warwick 1998, 1999; see also Chapter 5).

As long as the phylogeny of the assemblage of interest is reasonably
well resolved, measures of taxonomic (or hierarchical) diversity are, in
principle, possible. Pielou (1975) adapted the Shannon index to include
familial, generic, and species diversity and showed how the idea could be
extended to the Brillouin index. Izsak and Papp (2000} and Ricotta {2002
describe how a taxonomic weighting factor can be incorporated into
various diversity measures. May (1990b), Vane-Wright et al. (1991), and
Williams et al. (1991, 1994) used a different approach and devised meth-
ods based on the topology of a phylogenetic tree. Information on taxo-
nomic diversity can also be gleaned by summing the branch lengths
within a taxonomic tree, as in Faith’s {1992, 1994) measure of phylogen-
tic diversity (PD).

Measures of taxonomic diversity are not spared the conceptual or prac-

4 . The phylomatic website 15 a data base for applied phylogenetics and offers a different, but practical,
" approach to the phylogenetic measurement of diversity (http://www.phylodiversity.nst/phylomanc/].
5 The PRIMER package calculates PD {(www.pml.ac.uk/primer/ index.htm).
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tical problems of their species diversity counterparts. Both sets of mea-
sures give a predetermined weighting to the richness and evenness com-
ponents of diversity. Sometimes this weighting can lead to a loss of
information. For example, because Faith’s PD measure reflects the
cumulative branch length of the whole tree, it emphasizes the taxonom-
ic richness of a set of organisms at the expense of its evenness (Clarke &
Warwick 1998). This could hinder the identification of vulnerable as-
semblages [such as 2d). Another consideration is sensitivity to sampling
effort—a problem that species, and taxonomic, richness measures are
particularly vulnerable to. Two recent developments—a taxonomic dis-
tinctness measure (Clarke & Warwick 1998; Warwick & Clarke 1998
and a functional diversity measure (Petchey & Gaston 2002a, 2002b}—
merit further consideration.

Clarke and Warwick’s taxonomic distinctness index

A very promising recruit to this suite of methods is Clarke and
Warwick’s taxonomic distinctness measure (Warwick & Clarke 1995,
1998, 2001; Clarke & Warwick 1998, 1999). (Webb (2000) has indepen-
dently derived a very similar index for rain forest trees.|

A particular virtue of this measure, which is a natural extension of
Simpson’s index, is its robustness in the face of variable or uncontrolled
sampling effort. Taxonomic evenness of an assemblage is also accounted
for. Warwick and Clarke (2001) highlight the distinction between their
taxonomic distinctness measure, which summarizes the pattern of re-
latedness in a sample, and taxonomic distinctiveness (the phylogenetic
diversity of May, Vane-Wright, Williams, and Faith described above),
which is used primarily to identify species of particular conservation
importance.

The Clarke and Warwick measure, which describes the average taxo-
nomic distance —simply the “path length” between two randomly cho-
sen organisms through the phylogeny (or Linnean taxonomy) of all the
speciesin an assemblage —has two forms. The first form, A or “taxonom-
ic diversity” (appropriate for species abundance data), takes account of
species abundances as well as taxonomic relatedness. It measures the
average path length between two randomly chosen individuals (which
may belong to the same species). The second form, A* or “taxonomic dis-
tinctness,” represents the special case where each individual is drawn
from a different species. A*, a pure measure of taxonomic relatedness, is
equivalent to dividing A by the value it would take if all species belonged
to the same genus, thatis in the absence of a taxonomic hierarchy. When
presence/absence data are used both measures reduce to the same statis-

“tic, A*, which is the average taxonomic distance between two randomly

selected species. It is calculated as follows:
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Table 4.2 The weightings of steps in a taxonomic hierarchy for UK marine nematodes,
standardized using taxon richness at cach level (from Clarke & Warwick 1999).

k Sk o 0,

(step (taxon (default weighing for (step length proportional to
length) Taxon richness) constant step length) percentage decrease in richness)
1 Species 395 16.7 15.9

2., Genus 170 333 373

3 Family 39 50.0 60.2

4 Suborder 7 66.7 72.2

5 Order 4 833 86.1

6 Subclass 2 100 100

2 =[S 3 o, s6)2]

where s=the number of species in the study; and w;; = the taxonomic path
length between speciesiandj.

Animportant consideration is the weighting (v) assigned to each of the
levels in the taxonomic hierarchy. The simplest approach, as used by
Warwick and Clarke {1995, 1998) and Clarke and Warwick {1998), in
their studies of marine nematodes, it to set the value of v as 1. Each step
up through the hierarchy in search of a shared taxonomic level (from
species to genera, families, suborders, orders, subclasses, and classes) in-
crements the value of by 1. Forinstance, the path length for two species
in the same genus is @ = 1. As pairs of species become more distantly re-
lated the scores increase. If the species belong to the same family (but not
genus) o = 2; if they share no more affinity than being members of the
same class, ©=6.

As Clarke and Warwick (1999) recognize, there are cases where it may
be inappropriate to treat v as a constant. This will arise if some taxonom-
ic groupings convey little or no additional information. To resolve this
problem, Clarke and Warwick (1999) suggest defining the weight of a
step as proportional to the percentage of taxon richness accounted for by
the step. Thisisillustrated in Table 4.2. Such scaling of richness weight-
ing insures that the inclusion of a redundant taxonomic subdivison in
the analysis cannot alter the value of A*.

Rogerset al. (1999) contrasted the default weighting and the weighting
based on taxon richness (o, and @, %) in their analysis of fish communi-
ties in the northeast Atlantic and found that they produced highly corre-
lated values of A*. Clarke and Warwick {1999) also analyzed different
weightings and concluded that their measure of taxonomic distinct-
ness is robust as long as the distinction between taxonomic levels is
preserved.
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Thus, although it may appear logical to adjust the weighting of ® in
line with the distribution of phylogenetic diversity, unless the circum-
stances are exceptional the advantages of these extra calculations seem
rather slight. Furthermore, because the weighting is based on the rich-
ness of a particular assemblage, comparisons across assemblages are
problematic (Clarke & Warwick 1999).

Asnotedrepeatedly in this book, one of the difficulties that frequently
besets diversity measurement is sensitivity to sample size. Changes in
sampling effort often have a dramatic impact on the value of the measure
and the investigator is faced with the dilemma of trying to standardize
sampling across sites or to sample each site exhaustively. A particular
virtue of the taxonomic distinctness index is its lack of dependence
on sampling effort (Price et al. 1999). This is dramatically illustrated in
Figure 4.7, which contrasts the performance of three popular diversity
statistics, the Shannon diversity, Margalef diversity, and Simpson diver-
sity with A, A*, and A*. The issue of sample size is discussed in detail in
the next chapter.

A further advantage of A* is that a significance test can be carried out.
This examines the departure of A ¥, the distinctness measure for a set of
m species, from the value of A* calculated for the global species list, and
haspotential application in identifyingimpacted areas or localities of ex-
ceptional taxonomic richness. Clarke and Warwick (1998) derived the
method and explain itin detail. Their starting assumptionis that thereis
areasonably complete inventory of species for a region —and, of course,
that at least a Linnean taxonomy exists for these species. This condition
is likely to be met for well-studied taxa, such as birds and mammals, in
most parts of the world, and for less engaging organisms in the parts of
the world well populated by taxonomists. The null hypothesis that the
taxonomic distinctness of a locality is not significantly different from
the global list is tested by repeatedly subsampling species lists of size m
atrandom from the global list and constructing a histogram of the result-
ing estimates of A *. The observed A_* can be compared with the simu-
lated values of A . To reject the null hypothesis at the 5% level, the
observed A_* should fall below the 2.5 percentile (i.e., below the 25th
lowest out of 1,000 ranked simulated values of A_*) or above the 97.5
percentile (i.e., above the 975th out of 1,000 ranked simulated values)
(Figure 4.8).

Since the simulation must be repeated for each locality with a
different number of species (m) the procedure can be computationally
demanding. However, a faster method is also available. This is based on
the variance (equation 5 in Clarke and Warwick {1998); see also the
equation on p. 126) of the subsample estimate which is then used to
construct an approximate 95% confidence funnel (mean £+ 2 s.d.} across
the full range of m values [Figure 4.9). The mean is equal to the A* of
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Figure 4.7 Unlike other popular diversity measures, for example the Margalef (b},
Shannon |c), and Simpson (d) indices, Clarke and Warwick's taxonomic distinctness
measures, such as average A® shown here in panel (a), are independent of species richness.
Data shown represent Trinidadian freshwater fish assemblages and were collected by

Phillip {1998).

the global list and the standard deviation is the square root of the vari-
ance exXpression:

var(at,) = 2(s - m)[m(m - 1)(s -2)(s - 3)] "

[(s—m-1)o2 +2(s—1)m~ 2)o]
where s = the whole set of species; m = the number of species in the sub-

, (ohti 2
set; @, = the predetermined weightings; 0,2 = [[ZZ 0 2)/sls - 1)} - ®
e, th ianc: * Uthe =~ lenghe lo,2) harmraen ditferent speries);
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Figure 4.8 The Fullerton Riverin Trinidad has been colonized by tilapia (Oreochromis
niloticus), one of the world’s most invasive organisms (www.issg.org/database). Has this
invasion had an impact on the taxonomic distinctness of the assemblage? The graph plots
999 simulated values of A*, based on m = 8 species (the species richness of the Fullerton
site) drawn at random from the Trinidad species pool. The value for Fullerton lies well
below the 2.5 percentile indicating that the site is less taxonomically distinct than
expected. The data are {rom Pillip {1998) and the analysis used the primER package.
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Figure 4.9 Confidence funnel indicating the taxonomic distinctness of the Fullerton site
(sce Figure 4.8) in relation to the pattern for localities across Trinidad. The funnel plot
shows the 95% probability limits of A* (based on 999 random selections) for each value of
m [number of species). The dotted line indicates average taxonomic distinctness which,
asnoted in the text, does not change with S. The points {or the other sites are not shown
on this graph for clarity but can be seen in Figure 4.7a. The data are from Phillip (1998) and
the analysis used the pPRIMER package.

642 =(X®2)/s] - @ [i.e., the variance of the mean path lengths (®,) from
each species to all others); @, = {Eﬂ:j](ujj)/{s - 1); and @ = (%, ©))/s =
(%105 [s(s — 1] = A" -

Since 6,” and o,? are constants that are a function of the taxonomic
structure of the global species list, they need only be calculated once to
construct the confidence funnel.
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Variation in taxonomic distinctness (A*) (Clarke & Warwick 2001b;
Warwick & Clarke 2001) measures the evenness with which the taxa are
distributed across the hierarchical taxonomic tree. A™is largely indepen-
dent of sample size and (as with A*) can be tested against an expectation
based on the species list for the region. It is also possible to construct a
two-dimensional “envelope” plot of A" versus A™. This combination pro-
vides a statistically robust summary of the taxonomic diversity of the as-
semblage. The PRIMER package®is recommended for all these analyses.

As Clarke and Warwick (1998) note, these tests, in contrast to vir-

tually all other diversity statistics, can be used in situations where sam-
pling is uncontrolled and where the data are in the form of species pres-
ence/absence. Indeed, they argue that the method is relatively robust
against sampling inconsistencies, so long as these do not bias the esti-
mates of A" in any systematic way. For example, recorders in different
localities might vary in expertise but this will not matter if misidentifi-
cations occur at random across the species pool. Of course, certain
groups are more taxonomically challenging and it is important that the
user is vigilant for any potential biases. In addition, some sampling tech-
niques, such as notoriously different types of light trap (Southwood &
Henderson 2000), can favor the collection of some taxa and prejudice the
recording of others (see also Chapter 5).

Functional diversity

Functional diversity has attracted considerable interest as a conse-
quence of the current debate on ecosystem performance. Indeed, the pos-
itive relationship between ccosystem functioning and species richness
is often attributed to the greater number of functional groups found in
richer assemblages (Diaz & Cabido 1997; Tilman 1997, 2000; Hector et
al.1999; Chapin et al. 2000; Loreau et 41.2001; Tilman et al.2001). More-
over, it is not always obvious how functional groups should be delineat-
ed, nor which species should be assigned to them. Petchey and Gaston
(2002a, 2002b) have recently proposed a new method for quantifying
functional diversity (FD). This approach is conceptually similar to the
phylogenetic diversity (PD) measure of May (1990b), Vane-Wright et al.
(1991}, Faith (1992, 1994}, and Williams et al. (1994). Both measures are
based on total branch length. However, whereas phylogenetic diversity
isestimated from a phylogenetic tree, functional diversityusesa dendro-
gram constructed from species trait values. One important considera-
tion is that only those traits linked to the ecosystem process of interest

e —————————
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are used. Thus a study focusing on bird-mediated seed dispersal would
exclqde traiFs such as plumage color that are not related to this function
A trait matrix, consisting of s species and t traits is assembled, and theﬁ
converted into a distance matrix. Standard clustering algorithms are
used to generate a dendrogram, which in turn provides the informatio
peeded to calculate branch length (Petchey & Gaston 2002b). The resuh?
ing measure is continuous and can be standardized so that it falls
betwgen O.and 1. The method makes intuitive sense. For example, a com
munity w1t‘h five species with different traits will have a higher F’D thar;
a commumty of equal richness but where the species are functionall
similar. And, as the complementarity of the species increases, the Valuz
o‘f FD becomes more strongly associated with species richnes/s In addi-
tion, the measure appears robust and provides qualitatively siﬁilar
sults when different distance measures and clustering techniques z:ree:
used. 'FD has been shown to be a powerful technique for evaluating the
functional consequences of species extinctions {Petchey & Gf t
20023) and has the potential to shed light on a number of key iszuc;n
in ecology, such as species packing and community saturation. To dat i
has been evaluated using well-censused assemblages in whicﬁ the fue :
tlon?ll roles of the member species have been extensively docume tng
It will be interesting to see how it performs when samples are inn .
plete and where the functional dynamics are less well understood o

Body size and biological diversity

Ip contrast to taxonomic and functional diversity measures, “tradi

t10nz%l” diversity measures treat all species as equal. Species abulndalrrlac .
prov1deithe only weighting in heterogeneity and evenness statistices
Other differences are ignored. Species abundance {typically measured .
Fhe number of individuals or biomass) is an intuitive measure of s ecias
1mp0r'§ance. Indeed, niche apportionment models are built bn tie .
sumption that relative abundance is a surrogate for the mannerin whié::S};
resources are distributed amongst species (Chapter 2). None the less

species abundance data can be time consuming to colléct Oindo etes?
(2001) have devised a new index which makes inferences ai)out the reil ‘
tive abundances of species from their body size. It is based on the ob o
vation {Damuth 1981} that there is a predictable relationship b cen
body size and abundance: nemp between

A=Lkw-075

where A =the abundan ies: _
epecies. ce of a species; and W =the average body mass of a
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Different guilds have different values of k. Oindo et al.’s (2001) index
uses this relationship to estimate diversity:

n
_ -0.75
B= Zwi
1=l

The new index performed well when tested using assemblages of
mammalian herbivores in Kenya and has potential in rapid biodiversity
assessment. Further evaluation would be useful, particularly in circum-
stances where species have been disproportionately harvested.

Summary

1 Diversity indices, sometimes referred to as heterogeneity measures,
distil the information contained in a species abundance distribution
into a single statistic. Heterogeneity measures fall into two categories:
parametric indices, such as log series o, that are based on a parameter
of a species abundance model, and nonparametric indices, such as the
Simpson index, that make no assumptions about the underlying distrib-
ution of species abundances. Nonparametric measures can be further di-
vided into those that emphasize the species richness component of
diversity, for example the Shannon index, and those, for instance the
Berger-Parkerindex, that focus on the dominance/evenness component.
2 Although nonparametric measures are not linked to specific species
abundance models the underlying distribution of species abundances
can influence their performance. ) ’

3 One of the most popular diversity statistics, the Shannon index, has
properties that can impede the interpretation of results. On the other
hand, the Simpson index performs well, both as a general purpose diver-
sity statistic and when recast as an evenness measure. Advice on the
selection of diversity measures is provided in Box 4.1.

4 Communities may be identical in terms of richness and evenness but
differin the taxonomic diversity of their species. A new class of measures
takes this aspect of biological diversity into account. One promising
method, the Warwick and Clarke taxonomic distinctness measure, is an
extension of the Simpson index and has the advantage of being robust
against variation in sampling effort.

5 Confidence limits can be applied to many of these measures. Chapter
5 provides details.

chapter five
Comparative studies of
diversity'

Aslnotedin the introductory chapter, biodiversity measurement is fun-
damentally a comparative discipline. A single estimate of diversity isnot
informative. It is only when we ask whether forest x has more bird
species than forest y or how pollution has affected the diversity of as-
semblage z that the measures begin to have meaning. Analyses of shifts
in specics richness along spatial or temporal gradients (such as latitude
or succession) are one form of comparative investigation. Relating pat-
terns of diversity to variation in land use is another. Even estimates of
the total number of species on earth are comparative in the sense that
they can be contrasted with levels of diversity at earlier points in evolu-
tionary history, adopted as a benchmark against which extinction rates
can be evaluated or used to highlight our planet’s unique biota. Meaning-

- ful comparisons, however, demand good data. Since sampling effort has

asignificant impact on biodiversity measurement the chapter begins by
discussing sampling procedures and pitfalls. The units in which abun-
dance is measured—for example, number of individuals, biomass, and
cover—are also discussed. I then review the statistical methods used to
determine whether the diversity of two (or more) assemblages differ and
toset confidencelimits on diversity measures. The chapter concludes by
focusing on the application of diversity measurement in environmental
assessment.

1 After Sanders (1968).
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