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CHAPTER 9
Background

Ecological communities are composed of a number of coexisting species. Some
communities may have a large number of species (¢.g., 2 tropical forest); others
may have just a few (e.g., a polluted river). In Chapters 7 and 8 we described
some empirical models for quantifying the relationships between the total
number of species in a community and some measure of their abundances
(e.g., total numbers). In this part of the book, we are interested in examining
the affinities of coexisting species. How do coexisting species utilize common
resources?

Consider, for example, a species-rich lake that has four dominant fish, all
about the same size. Are they in direct competition for food and space? Do
some species feed exclusively in the surface waters, while others feed on the
Jake bottom? When we spatially locate species 4, are we likely more often
than not to find species B there as well? In a broad sense, we can define such
interspecific interactions as the degree of affinity between species.

One measure of affinity is the degree to which species overlap in their
utilization of common resources. This overlap is defined in terms of various
portions of the species niche that is shared by other species. Niche studies
are based on such species attributes as diet, microhabitat preference, and
timing of activities (e.g., foraging). Measures of niche overlap are presented
in Chapter 10.

In Chapter 11 we cover the topic of interspecific association. In this instance,
we are concerned only with measuring how often two species are found
together in the same location. This affinity (or lack of it) for coexistence is
tested by examining if the occurrence of the species [ina series of sample units
(SUs)] is greater than or less than what would be expected if they were
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108 SPECIES AFFINITY

independent. If either positive or negative association is detected, we can
measure the strength of this association with indices.

Association is based solely on presence/absence data. If a sample contains
quantitative measures of species abundance, we can determine the covariation
in abundances between species. This may lead to questions concerning species
affinities. For example, if the abundance of one species always decreases when
the other species increases, is there some type of causal negative interaction?
Measures of interspecific covariation are presented in Chapter 12.

Each of these approaches is intended to help the ecologist detect patterns
in species interactions. Of course, nothing about the underlying causes of
a pattern can be inferred simply from its detection, although we hope that
pattern detection will lead directly to testable hypotheses.

9.1 MATRIX VIEW

Cattell (1952) noted that the ecological data matrix could be studied from
two distinct viewpoints: (1) down columns (the SUs) or (2) across rows (the
species). Depending on which of these options is chosen, certain measures of
resemblance are available. A taxonomy of these resemblance functions is given
in Figure 9.1. It is important to recognize that the appropriate choice of

RESEMBLANCE FUNCTIONS

Q-HODE (SUs) R~MODE (SPECIES)
Similority Overlop Indices (Chapter 10)
Coe;:;'t.:u:nts (Chapter 14) Petraitis
. e Levin
Dice
Jaccard . Associotion
Coefficients (Chapter 11)
Distance ’ Dc!noi
Coefficients (Chapter 14) Dice
Euclidean Joccerd
Yules

Squared Euclidean
Mean Euclidean

Absolute Correlation
Mean Absolute Coefficients (Chapter 12)
Percent Similarity Pearsons

Relative Euclidesn Spearman Rank

Relative Absolute
Chord
Geodesic

Figure 9.1 Resemblance functions applicable to Q-mode anal ysis (similarity, distance)
and R-mode analysis (overlap, association, correlation).
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Figure 9.2 The shaded area indicates the form of the ecological data matrix for
measuring species affinity. Interest is in the occurrences or abundances of species across
sampling units.

a function is related to the fact that, in the ecological data matrix, we consider
the species (rows) to be dependent on one another, whereas the SUs (columns)
are independent samples (Legendre and Legendre 1983).

From our background discussion, the student will recognize that our
interest in Chapters 10—12 is in species affinity, that is, measuring pairwise
species resemblance based on data across rows in the ecological data matrix
(Figure 9.2). Ecologists refer to this as R-mode analysis (Legendre and
Legendre 1983).

The R-mode resemblance functions (Figure 9.1) are divided into overlap
indices (Chapter 10), association coefficients (Chapter 11), and covariation
coefficients (Chapter 12). These R-mode indices measure the dependence or
intensity of the affinity between species. Intuitively, this makes sense because
we are measuring the resemblance of species that occur together in SUs.

0-mode resemblance functions measure the similarity or dissimilarity be-
tween SUs in terms of their species composition (i.e., down columns). Again,
this terminology makes sense since we are comparing how similar or dissimilar
independent samples are. Parts V through VII of this book are largely con-
cerned with Q-mode analyses. Q-mode resemblance functions are presented
in Chapter 14. A graphical representation of R- and Q-mode approaches is
given in Figure 13.2.

Whereas the scheme presented in Figure 9.1 seems straightforward, there
are many cases in the ecological literature where R- and @-mode indices have
been interchanged. For example, the association coefficients we describe in
Chapter 11 have also been used to measure similarity between SUs (Chapter 14).
Because of the nature of some of these particular coefficients, such usage
is acceptable; however, using an R-mode coefficient like the correlation coef-
ficient to measure Q-mode resemblance is not recommended (Orloci 1972,
1978).
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association.) Depending on the size and shape of the SU, it is possible to
influence the outcome of association. This dependence can be lessened if the
selection of the SU is made relative to the size, shape, and spatial distribution
of the species under study. The SU must be large enough to potentially include
at least one individual of each species and yet not so large that one of these
species is included in every SU (Greig-Smith 1983).

11.2.1 Test of Association (Two-Species Case)

sTEP 1. DATA sSUMMARY. For each pair of species, 4 and B, we obtain
the following:

a = the number of SUs where both species occur

b = the number of SUs where species 4 occurs, but not B
¢ = the number of SUs where species B occurs, but not A
d = the number of SUs where neither A nor B are found
N = the total number of SUS(N=a+ b +c + 4d)

This information is conveniently summarized in the form of a 2 x 2 table
(Figure 11.1). Both the test and measures of association presented below are
based on these data.

The expected frequency of occurrence of species A in the SUs, which we will
represent as f(A), is given by

fay =12 ; b (11.1a)
and, for species B, by
a+c
B =" (11.1b)

We assume that both species have occurred in at least one SU in the collection,
that is, f(A) and f(B) are greater than 0.

Species
B8

present| absent

Species present a b m=a+b

A

absent € d n=c+d

r=a+c|s=b+d |pN-g+b+c+d

Figure 11.1 2 x 2 contingency or species association table.
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STEP 2. STATE HYPOTHESIS. The null hypothesis is that the species are
independent (i.e., there is no association).

STEP3. COMPUTE TESTSTATISTIC. The 2 x 2 table contains observed values
for each of the cells (a, b, ¢, and d) from the sample of size N. To test for
association, we compute what the expected values for each cell would be if
the occurrences of species A and B are, in fact, independent and compare them
to the observed values. A chi-square test statistic can be used to test the null
hypothesis of independence in the 2 x 2 table. The chi-square test statistic is
computed as

(observed — ex.pected)2

=X expected (112)
which is a summation over fhe four cells of the 2 x 2 table.
The expected value for cell a is given by
E(a) = W == (11.3)
or, from Eq. (11.1),
E(a) = f(B)(a + b) = f(4)(a + ¢) (11.4)

In words, Eq. (11.4) states that of the total number of SUs where species A
was present (i.c., a + b), we expect that if A and B were independent, species B
should also be present in proportion to its overall frequency in the SUs, that
is, f(B); and vice versa for species A’s presence in SUs where species B is
present.

Similarly, the expected values for cells b, ¢, and d are, respectively,

E(b)=§, E(c)=%, and E(d)=% (1L.5)

The chi-square test statistic [Eq. (11.2)] is now given as

th=L‘i%()“)]+...+£‘LE%()d_)l (11.6)

A mathematically equivalent, but certainly simpler equation, which may be
used instead of Eq. (11.6), is :
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N(ad — bey?
2 _
1w = o— (11.7)

Actually, in addition to being simpler to use, since Eq. (1 1.7) does not require
the computation of expected values, nor the differences between observed and
expected values, the associated rounding errors are avoided.

The significance of the chi-square test statistic is determined by comparing
it to the theoretical chi-square distribution. The 2 x 2 contingency table has
one degree of freedom, since a contingency table withr rows and ¢ columns has
(r — 1) times (c — 1) degrees of freedom (Zar 1974). The theoretical chi-square
value for 1 df at the 5% probability level is 3.84. If y? > 3.84, we reject the
null hypothesis that the co-occurrence of species 4 and B is independent and
conclude that they are associated.

There are two types of associations:

1. Positive—if observed a > E(a), that is, the pair of species occurred
together more often than expected if independent.

2. Negative—if observed a < E(a), that is, the pair of species occurred
together less often than expected if independent.

This comparison of observed a to E(a), that is,
a — E(a) = (ad — bc)/N (11.8)

results in the quantity ad — bc appearing in the numerator of all x2-like
formulations, such as Eq. (11.7). ‘

If any cell in the 2 x 2 table has an expected frequency <1 or if more than
__two of the table cells have expected frequencies <5, then the resulting chi-
square test statistic will be biased (Zar 1974). A corrected chi-square is used
to avoid biased values resulting from low cell expectations. In such cases,
_ a continuity correction is applied to ensure a closer approximation to the
theoretical, continuous chi-square distribution. This is achieved by using
Yates’s correction formula: ‘

_ — 2
© g Nled =Gl - (V)] 119)

11.2.2 Measures of Association (Two-Species Case)

Hubalek (1982) reviewed the properties of 43 indices that have been used to
measure the degree of association between pairs of species. To sort through
 this plethora of indices, Hubalek identified five “admission” conditions. Indices
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that failed to satisfy any one of these conditions were deemed inadmissible
and dropped from further consideration. The remaining admissible indices
were then compared against eight optional criteria in order to help select
the best association indices. Janson and Vegelius (1981) conducted a similar
study where the characteristics of 20 association indices were examined over
six “admission” conditions, The details of all these admission conditions

are beyond the scope of our presentation, but five important conditions are
listed here.

coNDITION 1. Each association index should reach its minimum value at
a =0, that is, when the two species are never found together.

conpITIoN 2. The maximum value of the index should be when both
species always occur together, that is, when b =c = 0.

conNDITION 3. The association index should be symmetric, that is, the
value of the index should be the same regardless of which species is designated
“A” or “B” (Figure 11.1).

conDITION 4. The index should be able to discriminate between positive
and negative associations. Formally, this means that the value of the index
when a > E(a) is always greater than when a < E(a).

cONDITION 5. The index should be independent of d, that is, the number
of joint absences. There has been much debate as to whether the joint absence
of species has any ecological meaning (Clifford and Stephenson 1975, Goodall
1978b, Sneath and Sokal 1973). We agree with Hubalek (1982) that indices
using values of d are limited in ecology. For example, in a study of leaf
miners on oak leaves by Bultman and Faeth (1985), average values for their
2 x 2 tables used to test for association were a = 24, b = 875, ¢ = 1,140, and
d = 134,650! Any index using d would be “swamped” by the magnitude of d
(joint absences). ‘

Hubalek (1982) found six association measures to satisfy his admission
conditions, and Janson and Vegelius (1981) found three that generally per-
formed well. Three measures recommended by both studies—the Ochiai,
Dice, and Jaccard indices—are presented below. These indices are equal to 0

" at “no association” and 1 at “maximum association.” The Ochiai and Dice
measures are means of the ratios a/m and a/r, that is, the number of joint
occurrences of the two species compared to the total occurrences of species A
and B, respectively (Figure 11.1).

OcHIAI INDEX (OI ). The Ochiai (1957) index is based on the geometric
mean of a/m and a/r, that is,
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orl=—2% (11.10)

Ja+bJa+c

pice INDEX (DI). The Dice (1945) index is based on the harmonic mean
of a/m and a/r, that is,

2a

[=———
b 2a+b+c

(11.11)

JACCARD INDEX (7). ‘This index is the proportion of the number of SUs
'where both species occur to the total number of SUs where at least one of the
species is found:

a

JI_a+b+c (11.12)

To determine the sampling properties of a number of association measures,
Goodall (1973) took repeated samples from a population with known species
frequencies (a, b, ¢, and d) and computed the mean and variance of each index.
Jaccard’s index was found to be generally unbiased, even at small (N = 10)
sample sizes. The Dice index tended to underestimate the true population
values at small samples, but performed well at N = 20. Goodall did not test

the Ochiai index.

11.2.3 Interspecific Association (Multiple-Species Case)

Usually, the association of more than a single pair of species is of interest;
we may be interested in from 5, to perhaps 50 or more species. The number
of all possible pairwise species associations or combinations that may be
computed increases rapidly according to the equation S(S — 1)/2, where S is
the number of species. For example, with five species there are 5(4)/2 = 10
combinations; for 10 species, there are 10(9)/2 = 45. Obviously, there is the
problem of representing all the pairwise association index values in such a
way as to ease interpretation. There are two ways of diagramming these
multiple-species associations.

DIAGRAM 1. SPECIES ASSOCIATION COMPARISON MATRIX. All possible pair
combinations of species associations can be displayed in a matrix of the form
shown in Figure 11.2. To aid in interpretation, the species positions in the
matrix can be reordered in such a way as to place species with highly signifi-
cant positive index values along the diagonal of the matrix.



CHAPTER 13
Background

Given a set of objects and some measure of their resemblance to each other,
we can define classification as the grouping or clustering of these objects based
on their resemblance. Classification plays a fundamental role in many areas
of science in the search for what Sokal (1974) terms the “natural” system. A
natural system might be viewed as a reflection of those various processes that
have led to the observed arrangement of the objects. For example, in ecology
this “natural” system could be the end result of evolutionary processes.

The first step in the classification of ecological communities involves sam-
pling. Artificial or natural sampling units (SUs) are used, and various types
of data, both qualitative and quantitative, are obtained. These data may
include lists of species present or some indication of their abundance (density,
frequency, cover, biomass). Next, some measure of ecological resemblance
between all pairs of SUs is computed in order to quantify their similarity or
dissimilarity (what we term a Q-mode analysis, see Chapter 9). Finally, the
SUs (objects) are grouped according to their resemblances; SUs in each group
should have a number of common characteristics that set them apart from
the SUs of other such groups. The objective is to demonstrate the relationships
of the SUs to each other and, it is hoped, to simplify these relationships in
order to be able to make general statements about the classes of objects that
exist.

A study by Able and Noon (1976) is a good example of a potential classifi-
cation problem. Their objective was to describe avian community structure
along an elevational gradient in the Adirondack Mountains of New York.
They found 44 species of birds distributed along a census belt transect that
ranged from 400 to 1400 m elevation. Some species of birds were found in all
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160 COMMUNITY CLASSIFICATION

SUs along the gradient; others were found only within narrow limits of
elevation. At several locations (ecotones) along the gradient, major changes
in vegetation structure occurred, resulting in some natural upper and lower
distribution limits for some of the bird species. A classification of the SUs in
their study, based on species-abundance data, would reflect both the continu-
ous and discontinuous distributions of all 44 bird species. The “natural”
system of interest here, in a broad sense, is the grouping of the SUs that reflects
the abundances (and amplitudes of abundances) of the major bird species
along the elevational gradient.

Of course, homogeneous communities are not amenable to classification.
Also, since some of the techniques presented in Chapters 15 and 16 will
“classify” even a random data set, we have to be careful in our interpretation
of these results. Simply because it may be possible to classify a data set, a
spurious classification will not yield a meaningful ecological interpretation.
Various philosophies of classification theory have been reviewed by Goodall
(1970), Ratliff and Pieper (1982), Sokal (1974), and Whittaker (1978a, b); we
highly recommend that students seriously interested in classification read
these papers.

In the early days of ecology, classification of communities was largely
intuitive, based on subjective decisions and qualitative descriptions. More
recent trends have been toward objective methods of classification based on
quantitative data. In the next few chapters, we will examine some of these
objective methods. It is inevitable, however, that a degree of subjectivity
remains in all classification studies; whereas a given classification method will
yield unique results, an alternative method may yield different results and,
consequently, subjective decisions must be made.

Some terminology used in the following chapters is briefly deﬁned below:

1. Classifications may be either hierarchical or reticulate. As the name
implies, in a hierarchical classification, groups at any lower level of a classifi-
cation are exclusive subgroups of those groups at higher levels. In a reticulate
classification (which we will not consider), groups are defined separately and,
rather than hierarchically ordered, are linked together in a weblike network.

2. Classifications may be either divisive or agglomerative. In a divisive
classification, the entire collection of SUs is divided and redivided, based
on SU similarities, to arrive at the final groupings (i.e., picture an inverted
tree). In an agglomerative classification, as its name implies, individual SUs
are combined and recombined successively to form larger groups of SUs
(the tree).

3. Classifications may be either monothetic or polythetic. In a monothetic
classification the similarity of any two SUs or groups is based on the value of
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a single variable, for example, the presence or absence of a single species. In
a polythetic classification the similarity of any two SUs or groups is based
on their overall similarity as measured by numerous variables, for example,
species abundances.

In the subsequent treatment of classification methodologies, we make
use of both qualitative data (e.g., presence—absence or two-state character
data) and quantitative data (e.g., abundance or ordered multistate character
data). In Chapter 14 indices of ecological resemblance pertaining to Q-mode
analyses will be presented. In Chapter 15, the technique of normal associa-
tion analysis is described; this is a monothetic, divisive classification model
based on the presence—absence of species in SUs. In Chapter 16 a polythetic,
agglomerative classification technique generally known as cluster analysis
is described; this method is based on quantitative abundance data of species
in SUs.

13.1 MATRIX VIEW

In studies of species affinity (Chapters 10, 11, and 12), the ecological data
matrix was viewed across rows (Figure 9.2), that is, a R-mode analysis. In
classification studies, the ecological data matrix may either be viewed across
rows (Chapter 15) or down columns, that is, a Q-mode analysis (Figure 13.1).
In either case, the objective is the same: to classify SUs.

Another way to view the relationship between R-mode (species) and Q-
mode (SU) analysis is to conceptualize these relationships in a geometric way;
this has lead to the term hyperspace (Williams and Dale 1965) when referring
to R- and Q-mode studies. Species hyperspace is conceptualized as being
S-dimensional, that is, one dimension for each species in the sample of S
species. (Obviously, it is impossible for us to diagram the S-space beyond

tald

Species -

Skx
w

X
Factors ~

Z

Figure 13.1 The shaded area indicates the form of the ecological data matrix for
measuring Q-mode resemblance. Interest is in pairwise SU similarities.
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Figure 13.2 Q- and R-mode analyses viewed geometrically. Q-mode is the representation
of SUs in species space and R-mode is the representation of species in SU space. Note
that a; ; is the abundance of the ith species in the jth SU. Adapted from Legendre and
Legendre (1983).

S = 3.) SUs are then positioned within this S-space based on the relative
abundance of each species in a SU. The distance between the SUs in this
S-space represents their similarity (or, alternatively, their dissimilarity;
Chapter 14) to one another. An example is given in Figure 13.2, showing the
location of three SUs (@-mode) in the space of two species.

SU-hyperspace, on the other hand, is conceptualized as being N-dimen-
sional, one dimension for each of the N SUs in the sample. The species are
then positioned within this N-space in relation to their abundances; the closer
"two species are within this space, the more similar are their respective abun-
dances in the SUs. In Figure 13.2, the position of two species (R-mode) in two
SU-space is diagrammed. This type of spatial representation is much more
artificial, since the values on the SU axes are the abundances of the species in
the SUs (Legendre and Legendre 1983).

Finally, recall the distinction between a SU and a sample. A sample consists
of a collection of SUs (examples given in Table 1.1). Because of the tremendous
diversity of ecological communities, the student should be aware that the
columns of the ecological data matrix may represent either individual SUs or
samples. This is best illustrated by some examples from the literature.

In a study of benthic communities in Moreton Bay, Queensland, Australia,
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Stephenson et al. (1970) conducted extensive dredging of the aquatic substrate.
Their SU was a dredge that had a mouth 84 x 29 cm, a 2.5 m bag with 75 cm
of mesh, and cutting edges inclined at 25°. These specifications are important
because variations in any of these parameters would, most likely, affect the
collection of bottom-dwelling animals. The speed of their boat was maintained
at 0.6 km/hr and dredging was done for 2 minutes. The dredge catches were
sorted to determine the macrobenthos species present. They collected 355
species in 400 dredge stations or locations throughout the bay. Their ecologi-
cal data matrix of presence—absence data was 355 rows (species) by 400
columns (dredges or SUs), and both R-mode and Q-mode analyses were
performed on these data.

In the next example, the columns of the data matrix represent samples
rather than individual SUs. Huhta (1979) examined the changes in composi-
tion of soil arthropod communities in undisturbed and clear-cut forests north
of Helsinki, Finland, from 1962 through 1965 and again in 1968. In each forest,
samples were taken bimonthly. A sample consisted of four 25 x 25 cm qua-
drats of soil and litter, which were taken to the laboratory, and the total
number of arthropod species and their relative abundances determined. These
bimonthly data were combined into yearly samples for analysis. Thus, the
data matrix in Huhta’s study consisted of rows as soil arthropod species and
columns representing the yearly samples (5 years); the entries in the matrix
were number of individuals. Huhta proceeded to conduct a Q-mode analysis
of these data to ascertain how the years differed in terms of the composition
of the arthropod communities.

TABLE 13.1 Selected literature for examples of community classification studies
using either association analysis (AA) or cluster analysis (CA)

Location Community Method Reference
England Chalk grassland AA Gittins 1965
NWT, Canada  Benthos AA Vilks et al. 1970
Virginia Deciduous forest AA Madgwick and Desrochers 1972
Nigeria Savanna AA Kershaw 1973
Australia Forest—woodland AA Ashton 1976
Arizona Desert grassland AA Fish 1976
North Sea Marine benthos CA Stephenson et al. 1972
Australia Rain forest _ CA Dale and Clifford 1976
Atlantic ' Marine algae CA Lawson 1978
Puerto Rico Rain forest CA Crow and Grigal 1979
New York Deciduous forest CA Gauch and Stone 1979
England Peat-bog CA Clymo 1980
NWT, Canada  Arctic tundra CA Thompson 1980

Australia Rangelands CA Foran, et al. 1986




CHAPTER 14

Resemblance Functions

The ecologist is often faced with the task of making comparisons of plant
and/or animal samples when addressing questions of community structure.
These samples may be (1) obtained over various locations in the landscape,
such as Able and Noon’s (1976) study of bird distributions along an elevational
gradient, or (2) obtained from the same location but at differing times, such
as Livingston’s (1976) comparisons of December and June fish catch data. In
‘this chapter we describe some resemblance functions that quantify the similar-
ity or dissimilarity between samples. The more similar samples are in species
composition and quantity, the greater their resemblance, that is, the closer
their ecological distance.

141 GENERAL APPROACH

Resemblance functions, as broadly defined by Sneath and Sokal (1973), quan-
tify the similarity or dissimilarity between two objects based on observations
over a set of descriptors. The objects of interest to the ecologist are SUs
(sampling units or samples, see Chapter 13) and the descriptors are measures

of species abundance (e.g., density, biomass). Thus, as defined, these resem-
blance functions involve a Q-mode analysis, that is, between SUs.

The distinction between Q-mode and R-mode analysis was made in Chap-
ter 13 and the various resemblance functions used in these different modes
was illustrated in Figure 9.1. In general, two types of Q-mode resemblance
functions are distinguished: (1) similarity coefficients and (2) distance coeffi-
cients. Similarity coefficients vary from a minimum of 0 (when a pair of SUs

165
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are completely different) to 1 (when the SUs are identical). On the other hand,
distance coefficients are the opposite; they assume a minimum value of 0 when
a pair of SUs are identical and have some maximum value (in some cases
infinity) when the pair of SUs are completely different. Hence, distance coeffi-
cients are also referred to as dissimilarity coefficients. In fact, a similarity index
may always be represented as a distance, even if just by a simple transforma-
tion such as 1 — similarity (Legendre and Legendre 1983). Thus, distance may
be thought of as the complement of similarity (Sneath and Sokal 1973).

Needless to say, the number of resemblance functions is large. In this
chapter we limit our treatment to some of the more common similarity and
distance measures used in @-mode studies. However, this does not imply that
some of the statistical and probability indices proposed to measure Q-mode
resemblance (Legendre and Legendre 1983) might not be equally good, or,
perhaps, even better with certain data sets (see Section 14.7). Distance coeffi-
cients are perhaps the most popular among community ecologists and, in our
view, are the most straightforward in concept and application to community
data.

142 'PROCEDURES

14.2.1 Similarity Coefficients

Similarity coefficients are, by far, the most prolific indices in the ecological
literature (Legendre and Legendre 1983). These indices are based solely on
presence (indicated with a 1) or absence (indicated with a 0) data. Consider,
for example, the presence—absence of 3 species in 3 SUs:

SU
Species 1) ) 3)
A 1 1 0
B 1 1 0
C 1 0 1

In a Q-mode analysis, we are interested in the degree of similarity in species

composition between each pair of SUs (columns of the data matrix). The more

- species two SUs share relative to their total species complements, the greater

their ecological similarity. In this example, SU(2) contains two of the three
species also found in SU(1), but has no species in common with SU(3).

Recall that in Section 11.2.2 we presented three indices (Ochiai, Dice, and

Jaccard) based on presence—absence data that were used to measure the
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degree of association between species (an R-mode analysis, i.e., across the rows
of the data matrix). These same three indices can also be used to compute a
Q-mode similarity between SUs. The student should note that these are the
only types of functions that we use to measure both Q-mode (sample similarity)
and R-mode (species association) resemblance. The similarity between suU(1)
and SU(2) in the above example, as measured by the Ochiai index [O],
Eq. (11.10)], Dice index [DI, Eq. (11.11)], and Jaccard index [J1, Eq. (11.12)]
are:

2
OI, ,=——— =082
4
], ,=———=0.
DL =270+1 080
2
Me=5350+1- %%

Since we covered the use of these indices in Chapter 11, they will not be
presented again in this chapter.

14.2.2 Distance Coefficients s

Three groups of distance measures are distinguished below: (1) E-group (the
Euclidean distance coefficients), (2) BC-group (the Bray—Curtis dissimilarity
index), and (3) RE-group (the relative Euclidean distance measures).

The following matrix notation is used in the equations presented below:
X;; represents the abundance of the ith species in the jth SU. For example,
X, ; would be the abundance of the 4th species in the 3rd SU. As before, the
community data matrix is composed of S species and N SUs.

14.2.2.1 E-Group Distances

DISTANCE 1. EUCLIDEAN DISTANCE (ED). This measure is the familiar
equation for calculating the distance between two points SU; and SU, in

Euclidean space:
S
EDjk = Z:l (X” - Xik)z (14.1)

ED empbhasizes the larger differences in abundances of species between SUs,
since each species difference is squared and then summed. The final distance
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value is scaled down by taking the square root of the sum. The value of ED
ranges from zero to infinity, as do all of the E-group measures.

DISTANCE 2. SQUARED EUCLIDEAN DISTANCE (SED). This measure is sim-
ply the square of ED:

SED;, = _z (X, — Xy)? (14.2)

DISTANCE 3. MEAN EUCLIDEAN DISTANCE (MED). MED is similar to ED,
but the final distance is on a smaller scale since the mean difference is
used:

MED,, = \/ Liza (X, — Xa)® (14.3)

DISTANCE 4. ABSOLUTE DISTANCE (AD). This measure is the sum of the
absolute abundance differences taken over the S species:

S
ADjk = Z; |Xij - Xikl (14.4)

AD places less emphasis on larger differences than the previous three mea-
sures since differences in abundance are summed, but not squared. Thus,
smaller differences are given relatively greater weight in the final distance. This
distance measure is known as character difference in numerical taxonomy
(Sneath and Sokal 1973).

DISTANCE 5. MEAN ABSOLUTE DISTANCE (MAD). The MAD is similar to
AD but a mean distance is used rather than an absolute distance:

§=1 IXij — Xikl

(14.5)

MAD is equivalent to mean character difference used in numerical taxonomy
(Sneath and Sokal 1973).

14.2.2.2 BC-Group Distances. This group is represented by a single index
first introduced into the ecological literature by Bray and Curtis (1957). This
index remains very popular among ecologists. The first step is to compute the
percent similarity (PS) between SUs j and k as

PS; = ( AZWB>(100) (14.6a)
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where

W = i [min(X,-,-, Xik)]

s
A=Y X; and B=

i=1

Xik

e

-
Ll

1

Thus, PS between the jth SU and the kth SU is'a numerator of twice the sum
of the minimum (min) of the paired observations X;; and X, (the “shared”
species abundance between each pair of SUs) divided by a denominator of the
total of all the species abundances for the two SUs. For any pair of SUs with
identical species abundances, their similarity is complete, that is, PS = 100%.

The distance complement of PS is percent dissimilarity (PD), computed as

PD = 100 — PS (14.6b)
PD may also be computed on a 0-1 scale as
PD =1 - [2W/(A + B)] (14.6¢)

which is useful since it is more in line with the range of values assumed by
many of the other distance indices. We will use PD as computed in Eq. (14.6¢)
in our calculations below.

14.2.2.3 RE-Group Distances. This group contains distance indices that are
expressed on standardized or relative scales.

DISTANCE 7. RELATIVE EUCLIDEAN DISTANCE (RED). This measure incor-
porates species abundance totals within each SU so that the final distance
measure is standardized relative to differences in total SU abundances:

I . 2
wo- (o) - (%)) o

This equation is derived by applying Whittaker’s (1952) relative transforma-
tion for absolute distance [Eq. (14.8)] to Euclidean distance as suggested by
Orloci (1978). RED ranges from 0 to ﬁ

DISTANCE 8. RELATIVE ABSOLUTE DISTANCE ( RAD). This measure applies
Whittaker’s (1952) relative abundance correction to AD (in the same sense
that relative Euclidean distance “corrects” Euclidean distance):




170 COMMUNITY CLASSIFICATION

X X
zs Xu Zf Xik
RAD has a range from 0 to 2.

DISTANCE 9. CHORD DISTANCE (CRD ). This measure puts greater impor-
tance on the relative proportions of species in SUs and correspondingly less
importance on their absolute quantities. Technically, this is done by projecting
the SUs onto a circle of unit radius through the use of direction cosines. The
measure is then the chord distance between the two SUs after such a projec-
tion. We refer the student to Pielou (1984, p. 48) for a geometric illustration.
Chord distance is given by

CRDy, = /2(1 — ccosy) (14.9a)

where the chord cosine (ccos) is computed from

RAD;, = i (14.8)

x§=1 (Xinik)
VETXGYE X

Note that, in the case of presence—absence data, this ccos is identical to
Ochiai’s coefficient. CRD, like RED, ranges from 0 to \/f

DISTANCE 10. GEODESIC DISTANCE (GDD). This measure is the distance
along the arc of the unit circle (rather than the chord distance) after projection
of the SUs onto a circle of unit radius:

ccosy, = (14.9b)

GDDy, = arccos(ccos;,) (14.10)

GDD has a range from 0 to z/2 (i.e., 0 to 1.57).

To summarize the distances computed between all possible pairs of SUs
based on any of the similarity or distance measures described previously, it is
convenient to create a SU x SU matrix of distance (or similarity) values.
Examination of this matrix quickly reveals the distance between any two SUs
of interest. It is on this distance matrix that the clustering strategies of
community classification operate (Chapter 16). We give an example of a
distance matrix in Section 14.6.

143 EXAMPLE: CALCULATIONS

To illustrate the computations for the distance measures, the data in Table
14.1 will be utilized. From this simple data matrix of abundances for three
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TABLE 14.1 Community data matrix composed of three
SUs with abundance data for three species (Spp)

SUs
Spp @® ¥)] 3
63 20 15 0
) 10 0 6
3) 17 0 0

TABLE 14.2 Differences (DIF ), sums (SUM ), and sums of squares (S5Q) needed
for computing the distance between SUs 1 and 3

__ v DIF DIF? SUM
Spp ) G) 1-3) -3 (1+3)
(1) 20 0 20 400 20
© 10 6 4 16 16
)] 17 0 17 289 17
SUM = 47 6 41 _ 705
SSQ = 789 36

_ species in three SUs, the computations for the distances between SUs 1 and
3 will be illustrated. For the computations, the differences, sums, and sums of
squares within and between the three species in SUs 1 and 3 are needed (Table
14.2).

DISTANCE 1. EUCLIDEAN DISTANCE [Eq. (14.1)]:

ED, ; = /[(20 — 0)% + (10 — 6 + (17 — 0]
= /(400 + 16 + 289) = /705 = 26.6

DISTANCE 2. SQUARED EUCLIDEAN DISTANCE [Eq. (14.2)]:
SED, ; = (400 + 16 + 289) = 705

DISTANCE 3. MEAN EUCLIDEAN DISTANCE [Eq. (14.3)]:

MED, , = \/(705/3) = /235 = 153
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When comparing these three related measures, note that the value of SED is
much larger than that for ED and MED because the squared differences are
summed. The species with the largest differences between SUs 1 and 3 (i.e.,
Spp. 1) receive the greatest weighting in the final distance value (e.g., 400 for
Spp. 1 versus 289 for Spp. 3 and 16 for Spp. 2).

DISTANCE 4. ABSOLUTE DISTANCE [Eq. (14.4)]:
AD; 3 =120—0/+110—6] +[17+0{=20+4+ 17 =41
DISTANCE 5. MEAN ABSOLUTE DISTANCE [Eq. (14.5)]:
MAD, ; =41/3 =137
* When contrasting these two related measures with ED, SED, and MED, note

that since differences are not squared, less relative importance is given to those
species with the larger abundance differences (e.g., Spp. 1).

DISTANCE 6. BRAY~CURTIS DISSIMILARITY [ Eq. (14.6¢c)]:
PD, ; =1—[(2)0+ 6 + 0)/47 + 6)] =1 — (12/53) = 0.77

DISTANCE 7. RELATIVE EUCLIDEAN DISTANCE [Eq. (14.7)]:

RED; 3 = \/[(20/47) — (0/6)1* + --- + [(17/47) — (0/6)]
= /(0426 — 0)? + -+~ + (0.362 — 0)*
= /0.181 + 0.619 + 0.131 = ,/0.931 = 0.96

DISTANCE 8. RELATIVE ABSOLUTE DISTANCE [Eq. (14.9)]:

RAD, ; = |(20/47) — (0/6)| + --- + |(17/47) — (0/6)|
=10.426 — O] + --- +]0.362 — 0|
= (0.426 + 0.787 + 0.362) = 1.57
DISTANCE 9. CHORD DISTANCE. First determine the cosine of the chord
distance (ccos) using Eq. (14.9b):
ccos; 3 = [(20)(0) + (10)(6) + (17)(0)1//(789)(36)
= (0 + 60 + 0)/./28,404 = 60/168.5 = 0.356
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Then the chord distance [Eq. (14.9a)]:

CRD, , = /[2(1.0 — 0.356)] = \/(2)(0.64) = 1.13
DISTANCE 10. GEODESIC DISTANCE [Eq. (14.10)]:

GDD, , = arccos[0.356] = 1.21

144 EVALUATION OF DISTANCE FUNCTIONS

In the previous section we presented 10 common distance functions. It is
obvious that some of these are very similar to each other, while others seem
to be quite different. In this section we have some examples of how these 10
functions perform on different data sets.

All possible ( j, k) distances for the data set in Table 14.1 are shown in Table
14.3. Although SUs 2 and 3 share no species, the first five distance measures
(the E-group) actually indicate that these two SUs are more similar (lower
distance value) than either SUs 1 and 2 or SUs 1 and 3, which have one species
in common. The final five distance measures (the BC- and RE-groups) do not
give this unreasonable result. In fact, PD, RED, RAD, CRD, and GDD each
give the same ranking of distances, that is, SUs 1 and 2 are the most similar
and SUs 2 and 3 are the least similar, a more realistic result.

A first glance at Table 14.1 might intuitively suggest that the distance
between SUs 1 and 2 would be larger than the distance between SUs 1 and 3.

TABLE 14.3 Computed values for each of the 10 distance measures described in
the text based on the data given in Table 14.1

Distance Distance SUGK
Group Measure Equation (1,2) 1,3) 2,3)
E ED 14.1 204 26.6 16.2
SED 142 414. 705. 261.
MED 14.3 11.7 15.3 9.3
AD 144 32 41. 21.
MAD 14.5 10.7 13.6 7.0
BC PD 14.6 0.52 0.77 1.00
RE RED 14.7 0.71 0.96 1.41
RAD 14.8 1.15 1.57 2.00
CRD 149 0.76 1.14 141

GDD 14.10 0.78 1.21 1.57
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For the species in common, the absolute difference in abundance between SUs
1 and 2 is 5 (Spp. 1), whereas this difference for SUs 1 and 3 is 4 (Spp. 2).
However, the relative weights involved in computing these indices produces
the result that the distance between SUs 1 and 2 is smaller than between SUs
1 and 3. Although the data set in Table 14.1 is artificial and simple, it does
help to illustrate some of the difficulties when zero data are present in com-
munity data (the usual case) and the student should always proceed with
caution.

RED and RAD express species abundances relative to the total abundance
across all of the SUs. The effect of the RED and RAD expressions is to more
equalize the importance of species relative to SUs with high and low total
abundances. Two SUs with species in approximately the same proportions
will tend to be more similar (i.e., have a close distance). Thus, if one is interested
in measuring SU resemblance where species of high abundance in SUs with
high total abundance will tend to be equally weighted with species of low
abundance in SUs with low total abundance, the RED or RAD measures
could be used. '

Chord (CRD) and geodesic (GDD) distances compare species abundances
relative to the abundance sums of squares for the SUs. Thus, as with RED
and RAD, two SUs with species abundances in approximately the same
proportions will be close in distance.

To illustrate further the performances of these resemblance functions, the
data sets in Tables 11.4a and 14.4 were used to compute values for each of

TABLE 144 Percentage abundance data for 11 species (A—K ) in seven SUs.
These data were used to compute rank correlations between the 10 distance indices
discussed in this section .

SUs
Species n @ 3 @ &) ©) 7
A 100 0 50 100 5 0 85
B 90 10 50 40 0 0 0
o 80 20 50 20 5 0 . 65
D 70 30 50 10 0 5 0
E 60 40 50 5 5 0 75
F 50 50 50 0 0 5 0
G 40 60 50 5 5 5 0
H 30 70 50 10 0 0 65
I 20 80 50 20 -5 0 85
J 10 90 50 40 0 5 0
K 0 100 50 100 5 5 0
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TABLE 14.5 Spearman rank correlations between the 10 distance measures.
Correlations above and below the diagonal are based on the data in Tables 11.4a and
14.4, respectively

Group ED SED MED AD MAD | PD | RED RAD CRD GDD
E ED 1.0 \0.99 099 099 099 ;027| —-25 —-24 -—-22 -22
SED 1.0 1.0\ 099 099 099 (027 -25 —-24 -22 -22

MED 10 1.0 1.0 099 099 (027} —25 —-24 —22 -22

AD 0.86 0.86 0.86\ 1.0 1.0 027 | —26 —24 -—21 -—21

MAD 086 086 086 1.0\ 1.0 027} —26 —24. -—21 =21

.

BC PD 048 048 048 047 047 |10 064 067 066 0.66

RE RED 036 036 036 016 016 |056| 10 \0.99 097 097
RAD 031 031 031 020 020 |063]| 092 1.0\ 097 096
CRD 046 046 046 028 028 |057| 096 087 1.0 0.96

GDD 046 046 046 028 028 [057| 096 087 10 1.0

these 10 distance functions over all pairwise combinations of SUs. Then, using
Eq. (12.1), Spearman rank correlation coefficients were computed between all
pairwise combinations of the 10 distance functions (Table 14.5). Distances
based on functions within the E-group (ED, SED, MED, AD, and MAD) and
the RE-group (RED, RAD, CRD, and GDD) are highly correlated; on the
other hand, the correlations between these groups are low. The Bray—-Curtis
PD index had low correlations with the E-group, but fairly high correlations
(0.56-0.67) with the RE-group.
From these evaluations, we note the following:

1. In spite of the widespread popularity of the E-group distance measures,
we do not recommend their use. It is clear from our results (Table
14.3) that spurious results can occur. Wolda (1981) reached a similar
conclusion.

2. Any of the RE-group functions appear to perform reasonably well. There
seems little advantage in choosing any one over another (given their high
correlation, Table 14.5), but we have found chord distance [Eq. (14.9)]
to perform very satisfactorily over a diverse set of ecological data sets.

3. PD offers an alternative to the RE-group. This coefficient has been
highly recommended by Beals (1984), based on his successful use of PD
over a wide range of ecological studies.

145 EXAMPLE: PANAMANIAN COCKROACHES

This BASIC microcomputer program SUDIST.BAS (see accompanying disk)
was used to compute the distances between six Panamanian localities based
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TABLE 14.6 Distance measures between six Panamanian localities based on
abundances for five cockroaches using SUDIST.BAS

Distance Measure

L. E-Group BC-Group RE-Group

Locality

(H & ED MED SED AD MAD PD RED RAD CRD GDD
1 2 522 233 2722 94 188 0.50 049 083 074 0.76
1 3 746 334 5571 115 230 097 074 128 110 116
1 4 750 335 5626 116 232 0.98 108 176 1.28 1.38
1 5 642 287 4127 101 202 0.76 025 047 034 034
1 6 545 244 2966 94 188 0.66 047 084 044 044
2 3 471 211 2219 69 138 0.95 060 089 087 090
2 4 472 211 2226 70 140 0.97 062 093 064 066
2 5 386 173 1489 55 110 0.63 040 057 056 057
2 6 385 172 1486 48 9.6 0.50 077 118 089 092
3 4 1.0 0.4 1 1 0.2 0.33 071 100 077 079
3 5 114 5.1 130 14 2.8 0.78 085 138 118 1.27
3 6 241 108 5719 27 54 1.00 119 200 141 1.56
4 5 114 = 51 131 15 30 0.88 102 150 115 1.22
4 6 240 108 578 26 52 1.00 139 200 141 1.56
5 6 . 137 6.1 187 19 38 0.46 038 063 036 036

on the abundances of five cockroaches (data in Table 11.4a). The results are
given in Table 14.6. Note the great differences in scale for the various distance
measures. For example, squared Euclidean distance (SED) ranges up into the
thousands, but also as low as one. Recall that SED and the other E-group
measures (ED, MED, AD, and MAD) range from zero to infinity; this is
because they increase as the number of species (S) increases. In contrast, recall
that relative Euclidean distance (RED) and chord distance (CRD) have an
upper limit of only \/5 = 1.41, relative absolute distance (RAD) has an upper
limit of 2, and the geodesic distance (GDD) has an upper limit of n/2 = 1.57.

146 EXAMPLE: WISCONSIN FORESTS

Using the data matrix for eight trees in 10 upland forest sites, southern
Wisconsin (Table 11.6a), the program SUDIST.BAS (see accompanying disk)
was used to calculate all pairwise combinations of chord distances (CRD)
between the 10 sites (Table 14.7). Recalling that the maximum value of CRD
is 1.41 (for maximum dissimilarity), it is obvious that SUs 1 and 2 are the most
similar, followed by SUs 9 and 10.

Often, these results are used for subsequent analyses, such as cluster analy-
sis (Chapter 16). For such analyses, distances are conveniently used in the form
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" TABLE 14.7 - Chord distances between ten upland forest sites, southern Wisconsin
in SU x SU matrix form (above diagonal)

SUs @ 3 @ 5 © @ ® ©® (10)
) 015 061 05 083 117 102 122 135 130
@ 064 05 08 L6 102 122 133 129

(3) 045 094 114 112 118 138 125

@ 057 095 09 105 128 L8

(5) 079 067 095 116 107

6 074 041 080 080

(7 063 062 061

@ 052 053

© 031

ofa SU x SU comparison matrix (as illustrated by the 10 x 10 matrix of CRD
distances in Table 14.7).

147 ADDITIONAL TOPICS ON RESEMBLANCE FUNCTIONS

Hubalek (1982) judged the “admissibility” of 43 similarity coefficients as
0-mode resemblance functions for presence—absence data based on five major
“conditions.” Hubalek suggested that only four “generally worked well” on a
set of test data: (1) Jaccard’s coefficient of community, (2) Dice’s coincidence
index, (3) Kulczynski’s coefficient, and (4) Ochiai’s coefficient. The Jaccard,
Dice, and Ochiai coefficients were also highly recommended in an independent
critical review of 20 similarity measures by Janson and Vegelius (1981).
Wolda (1981) examined the effects of sample size and species diversity on
22 measures of ecological resemblance, including product-moment and rank
correlation coefficients and various measures based on information content.
Wolda did not recommend either of the correlation coefficients as similarity
indices. Of the information measures he examined, Wolda highly recom-
mended Morisita’s (1959) index because it proved to be independent of both
sample size and diversity. When the data require prior log transformation,
Wolda recommended Horn’s (1966) simplified version of Morisita’s index and
Horn’s index of overlap. However, Bloom (1981) found these two indices of
Horn’s to “diverge greatly from one another and from the theoretical stan-
dard” (the standard being based on a table of the area of a normal curve).
Ecologists have not made much use of the probability measures of resem-
blance, such as the indices described by Goodall (1964, 1966) and Feoli and
Lagonegro (1983). This is due in part to the relatively complex and lengthy
computations involved. The principal advantages of Goodall’s index are: (1)
it is on a scale from zero to one, (2) it is linear, and (3) it is applicable to both
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abundance and presence—absence data (Orloci 1978). The main disadvantage
is that the probabilities for the similarity of any two SUs are based on all the
SUs in the data set and, consequently, if SUs are either added to or taken from
a data set, the probability-based similarity between the two given SUs will
change.

Ecologists also have made little use of information indices, for example,
Horn’s (1966) index of overlap, for measuring the resemblance between SUS5.
Orloci (1978) describes some other information measures for SU resemblance.
For excellent reviews of different resemblance functions, we refer the student
to Boesch (1977), Campbell (1978), Clifford and Williams (1976), Goodall
(1978b), Hubalek (1982), Orloci (1972, 1978), Pielou (1984), and Williams and
Dale (1965).

Many ecological data sets are a mixture of quantitative information on

the density, frequency, cover, biomass, and so forth, of species in SUs. Some
species may be dominant in several SUs while absent in others. Also, there
are species that may be only rarely found in the entire sample. To avoid
the risk of overemphasizing the dominant species in the data analysis, ecolo-
gists often employ numerous standardizations or transformations of the data
before computing ecological resemblances (Jensen 1978). A large number of
types of transformations are possible, some of which we demonstrated above
in Section 14.2.2.3. Chardy et al. (1976) used a logarithmic transformation
before analyzing high-diversity plankton communities dominanted by only a
few abundant species. Other transformations may also have been appropriate
(e.g., angular and square-root transforms). Gauch (1982), Greig-Smith (1983),
Jensen (1978), Noy-Meir (1973), Noy-Meir et al. (1975), and Orloci (1978)
provide excellent overviews on the relative merits of ecological data transfor-
mations. Hajdu (1981), in a graphical comparison of 16 resemblance measures,
found that standardization by SUs had undesirable effects on an ordered
series. :
Of course, the search for new (and the comparison of old) ecological resem-
blance functions will continue. For example, new similarity functions based
on presence—absence (binary) data have been proposed and tested (Faith 1983,
1984), as well as a new way to compute distance (Bradfield and Kenkel 1987).
The real ecological value will come from gained understanding of which
measures are most robust when applied to classification and ordination
procedures.

148 SUMMARY AND RECOMMENDATIONS

1. Two types of Q-mode (SU) resemblance functions may be distinguished:
similarity coefficients and distance coefficients (Section 14.1).
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2. We recommend the Ochiai, Dice, and J accard similarity coefficients for
computing SU resemblance when the data consists of species presence—
absence data (Section 14.2.1).

3. Three groups of distance functions based on abundance data may be
distinguished: the E-group (Euclidean distance indices), the BC-group (repre-
sented by the Bray—Curtis dissimilarity index), and the RE-group (relative
Euclidean distance indices) (Section 14.2.2).

4. We do not generally recommend the use of the E-group distance indices
despite their widespread popularity. Although these indices have been of great
heuristic value in ecology, there are various pitfalls in their use (Section 14.4).

5. For computing SU resemblances when the data consist of quantitative
abundance data, we recommend chord distance from the RE-group of distance
functions.




CHAPTER 16
Cluster Analysis

Cluster analysis (CA) is a classification technique for placing similar entities
or objects into groups or “clusters.” The cluster analysis models we present
in this chapter are used to place similar samples into clusters, which are
arranged in a hierarchical treelike structure called a dendrogram. These clusters
or groups of SUs may delimit or represent different biotic communities.

161 GENERAL APPROACH

Given a set of objects and some measure of their resemblance to each other,
we defined classification (Chapter 13) to be the “sorting” of these objects into
groups or clusters. Cluster analysis is a technique that accomplishes this
sorting. The objects of concern here are ecological samples or SUs (e.g., plots,
transects, quadrats). CA is actually a general term that refers to a large number
of algorithms that differ mainly in their treatment of cluster formation.
We first present the general approach to CA before detailing procedures.
~ Initially, we must compute a Q-mode resemblance between the SUs. Although
numerous resemblance functions could be used, we restrict our coverage to
distance measures (see Chapter 14), because of their heuristic value in CA
(Sneath and Sokal 1973). The distances between all pairwise combinations of
SUs in a collection are summarized into a SU x SU distance or D matrix (e.g.,
Table 14.7) and the various CA strategies operate on this D matrix.
The CA models we describe in this chapter are agglomerative (Chapter 13):
they begin with a collection of N individual SUs and progressively build
groups or clusters of similar SUs. During each clustering cycle, only one pair

189
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Figure 16.1 Illustration of the Lance and Williams (1967 ) combinatorial clustering
method on five SUs [see Eq. (16.1) ].

of entities may be joined to form a new cluster. This pair may be (1) an
individual SU with another individual SU, (2) an individual with an existing
cluster of SUs, or (3) a cluster with a cluster. Hence, the term pair-group CA
is applied.

A general example of the pair-group approach is illustrated in Figure 16.1.
For this example we use five SUs and, hence, 10 pairwise [N(N — 1)/2]
distance values form the D matrix. The first step in all pair-group CA strategies
involves searching the D matrix for the smallest distance value between two
individual SUs. In Figure 16.1, this is shown to be between SUs 1 and 4,
represented by the symbols j and k, respectively. Hence, the first cluster is
formed at a distance D(}j, k) and this can be diagrammed using a dendrogram
(Figure 16.1, Cycle 1). The initial collection of five SUs is now reduced to one
cluster (C, = SUs 1 and 4 joined) and three individual SUs (2, 3, and 5). The
distance between this cluster and each of these three remaining SUs must now
be computed. Special equations have been developed for this type of compu-
tation and a general one by Lance and Williams (1967), called the linear
combinatorial equation, is given below.

The linear combinatorial equation takes the form

D(j, k)(h) = 2, D(j, b) + o, D(k, ) + BD(j, k) (16.1)
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TABLE 16.1 Parameter values for o, oy, and B in the Lance and Williams’
combinatorial equation [Eq. (16.1) ] for different hierarchical clustering strategies.
Names of the strategies follow Sneath and Sokal (1973 )/Lance and Williams (1967 ).
The number of SUs in the jth and kth groups are t(j) and t(k), respectively, and the
number of SUs in the combined group (j, k) is t(j, k)

Strategy @ oy B
Centroid (unweighted)/ t(j)/t(j, k) t(k)/t(j, k) —t(tk)/t(j, k)
centroid
Centroid (weighted)/ 1 1 -1
median
Group mean/unweighted 1 j)/t(j, k) t(k)/t(j, k) 0
. pair-grouping method
Flexible 0.625 0.625 —0.25°

2 is flexible with this strategy under the constraint that a, + o, + B = 1 and that o; = a,.

where the distance between the new cluster ( j, k) formed from the jth and kth
SUs and a third hth SU or group of SUs can be calculated from the known
distances D(j, k), D(j, h), and D(k, h) and the parameters &, o3, and B. For
example, the distance between SU 3 and the cluster represented by SUs 1 and
4 (Figure 16.1, Cycle 2) is given by

D, 4)(3) = o, D(1,3) + ¢, D(4,3) + BD(1,4) (16.2)

The different clustering strategies differ only in their values for oy, o;, and
(Table 16.1), which are the weights for determining the new distances (more
on this below).

The relationships between the SUs and the formation of new clusters, as
given in Eq. (16.1), are depicted in Figure 16.1 [the j’s, k’s and ks are those in
Eq. (16.1)]. From Figure 16.1:

1. Given N SUs in a collection, there are N — 1 cycles in CA. In this
example, there are four cycles.

2. In cycle 1, two individual SUs (represented by I's) are joined to form a
cluster. The distance at which SU 1 (symbol j) and SU 4 (symbol k) form
a cluster is given by D(j, k), the value from the D matrix.

3. In cycle 2, SU 3 (symbol h) joins the cluster formed in cycle 1 (symbol
C,). The j and k are SUs 1 and 4, respectively, and the cluster distance
between SU 3 and C, is D(j, k}(h).

4. In cycle 3, SU 2 (symbol k) joins the cluster formed in cycle 2 (symbol
C,). Note that j now represents cluster C,, and k is the latest SU to
join C,.
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5. In cycle 4, SU 5 (symbol k) joins cluster C,. In Eqg. (16.1), j is cluster C,
(SUs 1,3,4)and kis SU 2.

As previously mentioned, the «’s and fin Eq. (16.1) determine the “weighting”
of the distances. Depending on the weighting scheme used, the resultant cluster
formation will vary. In some cases, the differences are dramatic. Four specific
weighting schemes, the centroid (unweighted and weighted), group-average,
and flexible, are given in Table 16.1.

The concept of weighting is probably best illustrated by an example.
Returning to the example in Figure 16.1, for group-mean weighting the cluster
distance between cluster C; (where j = SUs 1, 4, and 3 and k = SU 2) and
SU 5 is given by [Eq. (16.1)]

D(1,4,3;2)(5) = 3D(1,4,3;5) + 1D(2,5) (16.3)
where o, = 3, a, =, and B = 0 (from Table 16.1).

The group mean clustering strategy (the unweighted pair-group method
with arithmetic averages), effectively computes the mean of all distances
between SUs of one group to the SUs of another and, hence, is unweighted.
On the other hand, for the weighted centroid strategy (Table 16.1), the com-
binatorial equation is

D(1,4,3;2)(5) = $D(1,4,3;5) + $D(2,5) — $D(1,4,3;2) (16.4)

which weights all fused groups as coequal regardless of differences in the
number of SUs in each group. Also, note that in the centroid strategy, once a
group is formed, it is replaced by its mean and intercluster distances are those
distances between these means or centroids.

16.2 PROCEDURES

The various clustering procedures operate on the D matrix of all possible
pairwise combinations of distances between SUs (e.g., Table 14.7). Any of the
distance measures presented in Chapter 14 could be used. It is assumed that
there are a total of N SUs in the collection.

STEP 1. OBTAINING THE INITIAL GROUP. The N x N D matrix is searched
for the smallest distance value between a pair of SUs. This pair represents
the two most similar SUs in the collection. These two SUs are joined (e.g.,
Figure 16.1).
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STEP 2. REDUCTION OF THE D MATRIX. There are now N — 1 entities in the
collection, in other words, one group composed of two SUs and the remaining
N — 2individual SUs. The distances between the new group and these remain-
ing SUs is computed from Equation 16.1. A new reduced D’ matrix is formed
which is now (N — 1) x (N — 1).

STEP 3. SEARCH THE REDUCED D' MATRIX. Just as in Step 1, the new D’
matrix is searched for the lowest distance value in order to identify the next
new group to form.

STEP 4. REPEAT STEPS 2 AND 3 UNTIL ALL SUS ARE JOINED INTO ONE GROUP.
This will take a total of N — 1 cycles since only a single pair (SU-SU,
cluster—SU, or cluster—cluster) may be clustered during any one computa-
tional cycle. The number of entities present at the beginning of any cycle (Step
2)is N — C, where C is the cycle number.

The final problem in CA is one of identifying specific groups or communi-
ties once the clustering is completed. The dendrogram, as shown in Figure
16.1, can be examined for groupings of SUs. While this is largely a subjective
decision, there have been some recent attempts to render this decision some-
what more objective (e.g., Hill 1980, Popma et al. 1983, Ratliff and Pieper 1981,
Rohlf 1974, 1982). These objective procedures will be discussed in Section 16.6.
A general guideline is that one does not divide so finely that one ends up with
a large number of fragmentary and uninterpretable groups.

16.3 EXAMPLE: CALCULATIONS

The Lance and Williams (1967) combinatorial linear model [Eq. (16.1)] is
illustrated by its application to a D matrix of Euclidean distances (Table 16.2).
These distances were computed from the contrived data for abundances of
three species in five SUs (Table 11.34). The reconstructions of D after each
clustering fusion are also given in Table 16.2. The flexible CA strategy is
illustrated.

STEP 1. OBTAIN THE INITIAL GROUP. The smallest Euclidean distance in the
D matrix is 1.41 between SUs 2 and 3. Hence, these two SUs are the first group
formed and this can be depicted in a dendrogram as shown in Figure 16.2,
clustering Cycle 1.
STEP 2. REDUCTION OF THE D MATRIX. The distance between this new
group (2,3) and the three remaining SUs is computed using Eq. (16.1) as

D(2,3)(1) = (0.625)(4.69) + (0.625)(5.10) — (0.25)(1.41)
=293 + 3.19 - 035 =577




194 - COMMUNITY CLASSIFICATION

TABLE 16.2 The D matrix of Euclidean distances between
five SUs based on the data in Table 11.3a. Only the upper-right
triangle is shown: (a) original D matrix, and (b)—(d) reduced
D matrices after successive SU fusions

Sampling Unit (SU)
(@ @ 3 @ Q)
(1 469 5.10 3.00 224
p=? 141 224 5.74
) 3.00 592
@ 3.74
(] 2.3) 4 ®
(1) 5.77 3.00 2.24
D' =(2,3) 293 6.94
)] 3.74
@ @.3) @)
(LS 139 3.66
T 2.3) 293
@ | 2.3,

D" =(1,5) 618 |

@ @ @ m (9 CEeing

il

I 4

Euclidean distance
BNOUDAUN=O

Figure 16.2 Dendrogram of the clustering of five sampling units using Euclidean
distance and the flexible strategy (f = —0.25).

' D(2,3)(4) = (0.625)(2.24) + (0.625)(3.00) — (0.25)(1.41)
=140 + 1.88 — 0.35 = 2.93

D(2,3)(5) = (0.625)(5.74) + (0.625)(5.92) — (0.25)(1.41)
=3.59 + 3.70 — 0.35 = 6.94

The reduced D’ matrix is shown in Table 16.2b. Note that the distances
between the unclustered SUs remain unchanged.
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STEP 3. SEARCH THE REDUCED D' MATRIX. The smallest distance in D’ is
2.24 between SUs 1 and 5. Hence, these two SUs are the next cluster formed
as shown in Figure 16.2, clustering cycle 2.

STEP 4. REDUCTION OF THE D’ MATRIX. The distance between this new
cluster and the remaining SU (4) and group (2, 3) is computed as

D"(1,5)(2,3) = (0.625)(5.77) + (0.625)(6.94) — (0.25)(2.24)
=3.61 + 4.34 — 0.56 = 7.39

D"(1,5)(4) = (0.625)(3.00) + (0.625)(3.74) — (0.25)(2.24)
= 1.88 + 2.34 — 0.56 = 3.66

Note that the reduced D’ matrix from the previous cycle is used to obtain all
new distances. This next reduced D” matrix is shown in Table 16.2¢c.

STEP 5. SEARCH THIS REDUCED D" MATRIX. The smallest distance value in
D" is 2.93 between the group represented by SUs 2 and 3 and SU 4. Hence,
these three SUs are joined to form a new cluster at a distance of 2.93 as shown
in Figure 16.2, clustering cycle 3.

STEP 6. REDUCTION OF THIS D" MATRIX. The distance between this new
cluster of three SUs and the only remaining entity, a group composed of SUs
1 and 5, is computed as

D"(2,3;4)(1,5) = (0.625)(7.39) + (0.625)(3.66) — (0.25)(2.93)
=4.62 + 2.29 — 0.73 = 6.18

step7. The final reduced matrix D" is shown in Table 16.2d and the final
fusion joins all of the SUs together at a Euclidean distance of 6.18. This is
illustrated in Figure 16.2, clustering cycle 4.

164 EXAMPLE: PANAMANIAN COCKROACHES

The BASIC program CLUSTER.BAS (see accompanying disk) was used to
compute a CA on the Panamanian cockroach data set of Table 11.4a. There
are five species of cockroaches in six locations, and relative Euclidean distance
(RED, see Section 14.2.2.3) is the resemblance function used along with the
flexible clustering strategy (see Table 16.1). A summary of the output from
the BASIC program is given in Table 16.3. Note that a cluster is referenced
by the SU with the lowest numerical value (for example, at cycle 2, the cluster
consisting of SUs, 1, 5, and 6, is referred to as “cluster 17).
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TABLE 16.3 Program CLUSTER.BAS results giving (a) distances between the six
Panamanian localities (SUs), and (b) clustering of the localities

(a) Relative Euclidean distances (D matrix )

SUs @ 3 @ 6] 6)
) 0.49 0.74 1.08 0.25 047
b @ 0.60 0.62 0.40 0.77
&) 0.71 0.85 1.19
@ 1.02 1.39
©) 0.38

(b) Clustering by the flexible strategy with f = —0.25

Clustering No. of Clustering Reference SUs
Cycle Groups Level SuU“ in the Group
1 5 0.25 1 5
2 4 0.47 1 5, 6
3 3 0.60 2 3
4 2 0.68 2 3, 4
5 1 143 1

All SUs form one group

2The lowest numerical value of SUs in group.

I I1
(1) (5) (6) (4 (2 (3

Relat. Euclidean distance

Figure 16.3 Dendrogram for the cluster analysis of six Panamanian localities using
RED and the flexible strategy. The horizontal dashed line shows the arbitrary division
line for defining clusters I and I1.

The pattern of clustering for the six locations (SUs) is summarized in the
dendrogram in Figure 16.3. To illustrate how these results might be inter-
preted, we have arbitrarily used a “cutoff” distance of 0.9 (shown as a
horizontal dashed line in Figure 16.3). At this level of resemblance there are
two distinct clusters: I (SUs 1, 5, and 6) and II (SUs 2, 3, and 4). Referring to
Table 11.44, it can be seen that SUs 1,5, and 6 are largely dominated by a
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single species, Latindia dohrniana. Of course, this is a simplified data set and
used only for illustration (see Section 16.6 for a further discussion of inter-
preting CA results).

165 EXAMPLE: WISCONSIN FORESTS

The Wisconsin forest community data in Table 11.6a was used with the BASIC
program CLUSTER.BAS. The results of CA on these 10 upland forest sites
(with eight trees) using each of the four strategies are given in Table 16.4.
Chord distance [CRD, Eq. (14.9)] was used.

The results for the flexible strategy are summarized in a dendrogram
(Figure 16.4). The two arbitrary dashed lines, at chord distances of 1.0 and
1.5, can be used as reference points for identifying clusters. At a distance
of 1.0, three clusters emerge: I (SUs 1, 2, 3, and 4), II (SUs 5 and 7), and I11
(SUs 6, 8, 9, and 10). At the higher chord distance of 1.5, clusters II and
II fuse, forming a single cluster. Thus, the four sites dominated by bur
and black oak (SUs 1-4) form a cluster distinct from the remaining six sites
(SUs 5-10), which are characterized by basswood and sugar maple (see
Table 11.6a).

From a comparison of each CA strategy (Table 16.4), it can be seen that
the results for the centroid methods and the group average are essentially
identical to those previously described for the flexible strategy. The major
differences are in the clustering of SUs 5 and 7. These SUs are, in fact,
somewhat intermediate between Clusters I and I1I (Figure 16.4), that is, they
have species characteristic of both clusters (see Table 11.6q).

These results illustrate an important point. Our experience suggests that

1 | ) A HI
_ () (@ 3) (@) (5) (M) (6) (8) (9) (10)

Chord distance
g

2.0 T

Figure 16.4 Dendrogram for cluster analysis of 10 upland forest sites, southern Wiscon-
sin, using CRD and the flexible strategy. The horizontal dashed lines represent reference
points for delimiting clusters I, 11, and 111.
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TABLE16.4 Program CLUS TER.BAS results giving (a) chord distances between the
10 Wisconsin forest sites (SUs), and clustering of 10 sites by the (b) weighted centroid,
(¢) unweighted centroid, (d) group-average, and (e) flexible strategies

(a) Chord distances (D matrix)

SUs @ ©) @ 5) ©) M @® 9) (10)
1) 0.15 0.61 0.50 0.83 1.17 1.02 1.22 1.35 1.30
) 064 . 050 0.85 1.16 1.02 1.22 1.33 1.29
3) 045 094 1.14 1.12 1.18 1.38 1.25
4) 0.57 095 0.90 1.05 1.28 1.18
5) 079  0.67 0.95 1.16 1.07
©) 0.74 0.41 0.80 0.80
) 0.63 0.62 0.61
8) 0.52 0.53
)] 0.31

(b) Clustering by the centroid (weighted ) strategy
Clustering No. of Clustering Reference SUs
Cycle . Groups Level sy in the Group
1 9 0.15 1 2
2 8 0.31 9 10
3 7 0.41 6 8
4 6 045 3 4
5 5 041 1 2,3,4
6 4 0.48 6 8,9,10
7 3 0.44 6 7,8,9,10
8 2 0.62 1 2,3,4,5
9 1 0.52 1 All SUs form one group
(c) Clustering by the centroid (unweighted) strategy
Clustering No. of Clustering Reference SUs
Cycle Groups Level SuU* in the Group
1 9 0.15 1 2
2 8 0.31 9 10
3 7 0.41 6 8
4 6 0.45 3 4
5 5 0.41 1 2,3,4
6 4 0.48 6 8,9, 10
7 3 0.44 6 7,8,9,10
8 2 0.62 1 2,3,4,5
9 1 0.65 1 All SUs form one group
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TABLE 16.4 (continued)
(d) Clustering by the group-average strategy
Clustering No. of Clustering Reference SUs
Cycle Groups Level Su° in the Group
1 9 0.15 1 2
2 8 0.31 9 10
3 7 041 6 8
4 6 0.45 3 4
5 5 0.56 1 2,3,4
6 4 0.61 7 9,1
7 3 0.67 6 7,8,9,10
8 2 0.79 1 2,3,4,5
9 1 1.13 1 All SUs form one group

(e) Clustering by the flexible strategy with f = —0.25

Clustering No. of

Clustering Reference SUs
Cycle Groups Level sy in the Group

1 9 0.15 1 2

2 8 0.31 9 10

3 7 041 6 8

4 6 045 3 4

5 5 0.67 5 7
-6 4 0.72 1 2,3,4

7 3 0.84 6 8,9 10

8 2 1.04 5 6,7,.8,9, 10

9 1 1.93 1 All SUs form one group

“Lowest numerical value of SUs in group.

these CA strategies will usually give very similar results when somewhat
well-defined groups exist in the D matrix. The Wisconsin forest data set
illustrates this quite well; because of the simplicity of the data in Table
11.6a, the patterns are obvious and the CA results are consistent with these
observations. Where problems arise is when the data sets are large and
complex, and with patterns that are not obvious a priori to the ecologist. The
different strategies may give somewhat different results and, because well-
defined cluster patterns may not necessarily emerge in any of the strategies,
caution is urged. Note that these CA results differ slightly from the classifi-
cation of SUs by association analysis (Section 15.4) where SUs 1-5 grouped
separately from SUs 6—10 (see Figure 15.2)
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16.6 ADDITIONAL TOPICS IN CLUSTER ANALYSIS

In this chapter four hierarchical clustering methods were presented that
operate under the combinatorial linear model of Lance and Williams (1967).
These methods are computationally efficient once the distance matrix (D) is
calculated, since it contains all the information needed to cluster the SUs.
Other strategies require the repeated use of the original D matrix at each cycle,
which becomes very tedious and is computationally inefficient. Extensive
reviews of various CA methods are given in Anderberg (1973), Gauch (1982),
Goodall (1978a), Orloci (1978), Pielou (1977, 1984), Romesburg (1984), Sneath
and Sokal (1973), and Whittaker (1978b).

Another hierarchical clustering method that is popular with ecologists is
minimum variance clustering (also known as Ward’s method—see Everitt 1974,
Hartigan 1975, and Orloci 1967a). This method has great intuitive appeal
because it is based on the simple underlying principle that at each stage of
clustering the variance within clusters is minimized with respect to the variance
between clusters. The within-group variance is defined as the sums of squares
of the distances between SUs within the cluster and the centroid of the cluster.
At each clustering cycle, the two SU clusters whose fusion results in the
smallest (minimum) increase in variance (relative to the variances within
each cluster taken separately) are joined. The computations required by this
method can be done through the use of SAS (Statistical Analysis Systems, Ray
1982) under the cluster procedure option for Ward’s method.

As briefly mentioned in Section 16.2, delimiting homogeneous communities
from the information provided by the clustering process is usually done
subjectively. The ecologist usually has some feeling about the number of
communities (groups of SUs) expected from the given data set, and it is a
simple matter to “cut the stems” in the dendrogram (e.g., Figure 16.4) at the
clustering level that gives this number of SU groups or communities.

There are, however, numerous objective methods that can be used along
with the intuition of the ecologist. One of the earliest methods proposed for
evaluating dendrograms was cophenetic correlation (Sneath and Sokal 1973),
where the distances between SUs implied from the dendrogram are compared
to the original SU x SU distance (D) matrix. Proceeding through each cluster
cycle, as larger and larger groups are formed (ceasing when all SUs are joined),
the correlation between the original D matrix distances and the dendrogram
distances will drop. A large drop in this correlation from one cycle to another
would suggest stopping fusion at the previous cycle. For example, if the
cophenetic correlation for the CA shown in Figure 16.4 was 0.80 at the chord
distance 1.0 (upper dashed line) but dropped to 0.50 at distance 1.5 (lower
dashed line), then perhaps the clusters formed by cutting the stems at 1.0
should be accepted as homogeneous communities.
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Orloci (1967a) suggested that significance levels could be determined for
delimiting homogeneous groupings during the minimum variance clustering
procedure. Goodall (1978a) formalized an approximate. variance ratio for
testing whether the increase in variance caused by the fusion of an SU or SU
group with another SU group is within an “acceptable” (e.g., P = 0.05) level.
Ratliff and Pieper (1981) generalized this analysis-of-variance approach to
include a test of the hypothesis that the mean intracluster distance is not
significantly different from the mean intercluster distance. Their procedure
begins with applying the test at the two-group level, that is, testing for differ-
ences in mean distances between all SU as one group versus being split into
two groups. This follows the procedure for Hill’s (1980) stopping rule, which
is a similar approach. For other recent developments in evaluating. classifi-
cations, the student is referred to the reviews by Archie (1984) and Rohif (1974)
and studies by Duncan and Estabrook (1976), Popma et al. (1983), and Rohlf
(1982). ,

The CA strategies shown in Table 16.1 (centroid, group average, and
flexible) are considered space conserving; the clustering of SUs at the various
levels (distances) introduces relatively little distortion when these clustering
distances are compared to the original SU x SU D matrix distances.

We have not included all the CA strategies that operate under the Lance
and Williams linear combinatorial model. For example, the single linkage and
complete linkage strategies (Sneath and Sokal 1973) are omitted. These two
CA methods are strongly space distorting, either by contracting distances with
“single” linkages or by dilating distances with “complete” linkages (Pielou
1977). That is, after fusion of clusters the reconstructed distance matrix differs
greatly from the original distance matrix (D).

The centroid strategies frequently result in what are termed reversals: the
distance between centroids of some pair may be less than that between another
pair merged at an earlier cycle. If the sum of the parameters «,, «,, and B
equals 1, then successive hierarchical joinings will be monotonic and reversals
will not occur. The flexible strategy is, therefore, by definition monotonic since
the sum of the parameters is constrained to equal 1. The flexible strategy’s
chief feature is that by varying B, which controls the space-conserving prop-
erties of the clustering strategy, the space can be made to either dilate or
contract. A f near —0.25 tends to be space-conserving, but as f becomes more
negative, the distortion is toward dilating and as B becomes more positive,
the distortion is toward contracting. We suggest the student refer to Sneath
and Sokal (1973) for further details on the flexible strategy.

In this chapter we have presented cluster analysis, assuming the data were
from SUs randomly dispersed over the landscape and with species abundances
or presence—absence observations. However, clustering SU data from a time
sequence can be used to examine ecological succession models (Legendre
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et al. 1985). Other types of observations can also be used for clustering, for
example, forest tree size classes or soil profile data (Faith et al. 1985).

16.7 SUMMARY AND RECOMMENDATIONS

1. Cluster analysis (CA) is a technique that accomplishes the sorting of
objects (SUs) into groups or clusters based on their overall resemblance to
one another. Similar SUs will form clusters distinct from other clusters of SUs.
Cluster analysis is a general term that refers to a large number of such
algorithms that differ mainly in their treatment of cluster formation.

2. The Lance and Williams (1967) general algorithm for CA is a linear
combinatorial equation [Eq. (16.1)]. By selecting various values for the pa-
rameters of Equation 16.1 (as shown in Table 16.1), four CA strategies can be
accomplished: the centroid (both weighted and unweighted), group-average,
and flexible.

3. The results of CA are conveniently summarized in a dendrogram (e.g.,
Figure 16.2). The identification of specific groups or communities from this
dendrogram is somewhat subjective. As a general guideline, we recommend
not dividing so finely that you end up with a large number of fragmented
clusters. Some objective methods have been proposed by several researchers
(Section 16.6). Although it is helpful for the student to use methods such as
CA as an aid in interpreting data, it is a mistake to place strong emphasis on
results of a single analysis.

4. Most of the CA strategies usually give very similar results when the basic
data set being analyzed is, in fact, one that is characterized by some relatively
obvious patterns (such as the example in Section 16.5). However, in cases when
the data set is large, somewhat complex in nature, and with no obvious
patterns, the results of the various CA strategies can often vary (in some cases,
substantially). In the latter case, we recommend that alternative strategies be
explored and their results compared; such comparisons often help identify
logical clusters (in view of the underlying ecological knowledge of the data).




